Skip to main content

Large Eddy Simulation and Second-Moment Closure Model of Particle Fluctuating Motion in Two-Phase Turbulent Shear Flows

  • Conference paper
Turbulent Shear Flows 9

Abstract

Turbulence statistics of non-settling discrete solid particles suspended in homogeneous turbulent gas shear flows generated by means of large eddy simulation (LES) are investigated for two different mean shear rates (S = 25 and 50 /s) and three different particle diameters (d = 30, 45 and 60 μm). Concurrently, a second-moment closure model of the particle fluctuating motion, based on separate transport equations for the particle kinetic stresses and the fluid-particle velocity correlations, is described and the corresponding predictions are compared with the simulation results. Large eddy simulation and closure model predictions show that the most noticeable effect of inertia is to increase the degree of anisotropy of the particle fluctuating motion with respect to the fluid one. As a matter of fact, the transverse particle turbulent velocity components are directly controlled by the dragging by the fluid turbulence and decrease with increasing particle relaxation time compared to the fluid turbulence integral time scale. In contrast, the streamwise component increases, due to the influence of both the fluid and particle mean velocity gradients, and eventually exceeds the corresponding gas turbulent component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardina, J., Ferziger, J.H., Reynolds, W.C. (1983): “Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous Incompressible Turbulent Flows”, Dept. Mech. Engen. Rep., TF 19, Standford University, California

    Google Scholar 

  • Csanady, G.T. (1963): “Turbulent Diffusion of Heavy Particles in the Atmosphere”, J. Atm. Science, Vol. 20, pp. 201–208

    Article  ADS  Google Scholar 

  • Deutsch, E., Simonin, O. (1991): “Large Eddy Simulation Applied to the Modelling of Particulate Transport Coefficients in Turbulent Two-Phase Flows”, in Proc. 8th Symp. on Turbulent Shear Flows (Univ. of Munich), Vol. 1,pp. 1011–1016

    Google Scholar 

  • Deutsch, E. (1992): “Dispersion de Particules dans une Turbulence Homogéne Isotrope Stationnaire Calculée par Simulation Numerique Directe des Grandes Echelles”, in Collection de notes internes de la Direction des Etudes et Recherches (Electricité de France, 92141 Clamart Cedex)

    Google Scholar 

  • Drew, D.A. (1983): “Mathematical Modeling of Two-Phase Flow”, Ann. Rev. Fluid Mech., Vol. 15, pp. 261–291

    Article  ADS  Google Scholar 

  • Gatignol, R. (1983): “The Faxen Formulae for a Rigid Particle in an Unsteady Non-Uniform

    Google Scholar 

  • Stokes Flow”, J. de Méc. Th. et Appl., Vol. l,pp. 143–160

    Google Scholar 

  • Haworth, D.C., Pope, S.B. (1986): “A Generalized Langevin Model for Turbulent Flows”, Phys. Fluids, Vol. 29, pp. 387–405

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • He, J., Simonin, O. (1993): “Non-Equilibrium Prediction of the Particle-Phase Stress Tensor in Vertical Pneumatic Conveying”, in Proc. 5th International Symposium on Gas-Solid Flows, ASME FED, Vol. 166, pp. 253–263

    Google Scholar 

  • Hinze, J.O. (1972): “Turbulent Fluid and Particle Interaction’, Prog. Heat and Mass Transfer, Vol. 8, pp. 433–452

    Google Scholar 

  • Khoudly, M. (1988): “Macrosimulation de Turbulence Homogéne en Présence de Cisaillement et de Gradients Thermiques. Application aux Modéles de Fermeture en un Point”, Ph.D. thesis, Ecole Centrale de Lyon

    Google Scholar 

  • Laurence, D., (1985): “Advective Formulation of Large Eddy Simulation for Engineering Flows”, Notes on Numerical Fluid Mechanics, Vol. 15, pp. 147–160

    Google Scholar 

  • Launder, B.E., Reece, G.J., Rodi, W., (1975): “Progress in the Development of a Reynolds-Stress Turbulence Closure”, J. Fluid Mech., Vol. 68, pp. 537–566

    Article  ADS  MATH  Google Scholar 

  • Liljegren, L.M. (1993): “The Effect of a Mean Fluid Velocity Gradient on the Streamwise Velocity Variance of a Particle Suspended in a Turbulent Flow”, Int. J. Multiphase Flow, Vol. 19, pp. 471–484

    Article  MATH  Google Scholar 

  • Maxey, M.R. (1987): “The Gravitational Settling of Aerosol Particles in Homogeneous Turbulence and Random Flow Fields”, J. Fluid Mech., Vol. 174, pp. 441–465

    Article  ADS  MATH  Google Scholar 

  • Reeks, M.W. (1993): “On the Constitutive Relations for Dispersed Particles in Nonuniform Flows 1: Dispersion in a Simple Shear Flow”, Phys. Fluids, Vol. 5, pp. 750–761

    Article  ADS  MATH  Google Scholar 

  • Rogers, C.B., Eaton, J.K. (1990): “The Behavior of Solid Particles in a Vertical Turbulent Boundary Layer in Air”, Int. J. Multiphase Flow, Vol. 16, pp. 819–834

    Article  MATH  Google Scholar 

  • Simonin, O. (1991): “Second-Moment Prediction of Dispersed Phase Turbulence”, in Proc. 8th Symp. on Turbulent Shear Flows (Univ. of Munich), Vol. 1, pp. 741–746

    Google Scholar 

  • Simonin, O., Deutsch, E., Minier, J.P. (1993): “Eulerian Prediction of the Fluid/Particle Correlated Motion in Turbulent Two-Phase Flows”, Applied Scientific Research, Vol. 51, pp. 275–283

    Article  MATH  Google Scholar 

  • Sommerfeld, M., Qiu, H.H. (1991): “Detailed Measurements in a Swirling Particulate Two- Phase Flow by a Phase-Doppler Anemometer”, Int. J. Heat and Fluid Flow, Vol. 12, pp. 20–28

    Article  Google Scholar 

  • Squires, K.D., Eaton, J.K. (1991): “Measurements of Particle Dispersion Obtained from Direct Simulations of Isotropic Turbulence”, J. Fluid Mech., Vol. 226, pp. 1–35

    Article  ADS  Google Scholar 

  • Tchen, C.M. (1947): “Mean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Fluid”, Ph.D. thesis, Delft

    Google Scholar 

  • Wells, M.R., Stock, D.E. (1983): “The Effects of Crossing Trajectories on the Dispersion of Particles in a Turbulent Flow”, J. Fluid Mech., Vol. 136, pp. 31–62

    Article  ADS  Google Scholar 

  • Yeh, F., Lei, U. (1991): “On the Motion of Small Particles in a Homogeneous Turbulent Shear Flow”, Phys. Fluids, Vol. 3, pp. 2758–2775

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simonin, O., Deutsch, E., Boivin, M. (1995). Large Eddy Simulation and Second-Moment Closure Model of Particle Fluctuating Motion in Two-Phase Turbulent Shear Flows. In: Durst, F., Kasagi, N., Launder, B.E., Schmidt, F.W., Suzuki, K., Whitelaw, J.H. (eds) Turbulent Shear Flows 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78823-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78823-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78825-3

  • Online ISBN: 978-3-642-78823-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics