Large Eddy Simulation and Second-Moment Closure Model of Particle Fluctuating Motion in Two-Phase Turbulent Shear Flows

  • O. Simonin
  • E. Deutsch
  • M. Boivin

Abstract

Turbulence statistics of non-settling discrete solid particles suspended in homogeneous turbulent gas shear flows generated by means of large eddy simulation (LES) are investigated for two different mean shear rates (S = 25 and 50 /s) and three different particle diameters (d = 30, 45 and 60 μm). Concurrently, a second-moment closure model of the particle fluctuating motion, based on separate transport equations for the particle kinetic stresses and the fluid-particle velocity correlations, is described and the corresponding predictions are compared with the simulation results. Large eddy simulation and closure model predictions show that the most noticeable effect of inertia is to increase the degree of anisotropy of the particle fluctuating motion with respect to the fluid one. As a matter of fact, the transverse particle turbulent velocity components are directly controlled by the dragging by the fluid turbulence and decrease with increasing particle relaxation time compared to the fluid turbulence integral time scale. In contrast, the streamwise component increases, due to the influence of both the fluid and particle mean velocity gradients, and eventually exceeds the corresponding gas turbulent component.

Keywords

Anisotropy Attenuation Covariance Vorticity Advection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardina, J., Ferziger, J.H., Reynolds, W.C. (1983): “Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous Incompressible Turbulent Flows”, Dept. Mech. Engen. Rep., TF 19, Standford University, CaliforniaGoogle Scholar
  2. Csanady, G.T. (1963): “Turbulent Diffusion of Heavy Particles in the Atmosphere”, J. Atm. Science, Vol. 20, pp. 201–208ADSCrossRefGoogle Scholar
  3. Deutsch, E., Simonin, O. (1991): “Large Eddy Simulation Applied to the Modelling of Particulate Transport Coefficients in Turbulent Two-Phase Flows”, in Proc. 8th Symp. on Turbulent Shear Flows (Univ. of Munich), Vol. 1,pp. 1011–1016Google Scholar
  4. Deutsch, E. (1992): “Dispersion de Particules dans une Turbulence Homogéne Isotrope Stationnaire Calculée par Simulation Numerique Directe des Grandes Echelles”, in Collection de notes internes de la Direction des Etudes et Recherches (Electricité de France, 92141 Clamart Cedex)Google Scholar
  5. Drew, D.A. (1983): “Mathematical Modeling of Two-Phase Flow”, Ann. Rev. Fluid Mech., Vol. 15, pp. 261–291ADSCrossRefGoogle Scholar
  6. Gatignol, R. (1983): “The Faxen Formulae for a Rigid Particle in an Unsteady Non-UniformGoogle Scholar
  7. Stokes Flow”, J. de Méc. Th. et Appl., Vol. l,pp. 143–160Google Scholar
  8. Haworth, D.C., Pope, S.B. (1986): “A Generalized Langevin Model for Turbulent Flows”, Phys. Fluids, Vol. 29, pp. 387–405MathSciNetADSMATHCrossRefGoogle Scholar
  9. He, J., Simonin, O. (1993): “Non-Equilibrium Prediction of the Particle-Phase Stress Tensor in Vertical Pneumatic Conveying”, in Proc. 5th International Symposium on Gas-Solid Flows, ASME FED, Vol. 166, pp. 253–263Google Scholar
  10. Hinze, J.O. (1972): “Turbulent Fluid and Particle Interaction’, Prog. Heat and Mass Transfer, Vol. 8, pp. 433–452Google Scholar
  11. Khoudly, M. (1988): “Macrosimulation de Turbulence Homogéne en Présence de Cisaillement et de Gradients Thermiques. Application aux Modéles de Fermeture en un Point”, Ph.D. thesis, Ecole Centrale de LyonGoogle Scholar
  12. Laurence, D., (1985): “Advective Formulation of Large Eddy Simulation for Engineering Flows”, Notes on Numerical Fluid Mechanics, Vol. 15, pp. 147–160Google Scholar
  13. Launder, B.E., Reece, G.J., Rodi, W., (1975): “Progress in the Development of a Reynolds-Stress Turbulence Closure”, J. Fluid Mech., Vol. 68, pp. 537–566ADSMATHCrossRefGoogle Scholar
  14. Liljegren, L.M. (1993): “The Effect of a Mean Fluid Velocity Gradient on the Streamwise Velocity Variance of a Particle Suspended in a Turbulent Flow”, Int. J. Multiphase Flow, Vol. 19, pp. 471–484MATHCrossRefGoogle Scholar
  15. Maxey, M.R. (1987): “The Gravitational Settling of Aerosol Particles in Homogeneous Turbulence and Random Flow Fields”, J. Fluid Mech., Vol. 174, pp. 441–465ADSMATHCrossRefGoogle Scholar
  16. Reeks, M.W. (1993): “On the Constitutive Relations for Dispersed Particles in Nonuniform Flows 1: Dispersion in a Simple Shear Flow”, Phys. Fluids, Vol. 5, pp. 750–761ADSMATHCrossRefGoogle Scholar
  17. Rogers, C.B., Eaton, J.K. (1990): “The Behavior of Solid Particles in a Vertical Turbulent Boundary Layer in Air”, Int. J. Multiphase Flow, Vol. 16, pp. 819–834MATHCrossRefGoogle Scholar
  18. Simonin, O. (1991): “Second-Moment Prediction of Dispersed Phase Turbulence”, in Proc. 8th Symp. on Turbulent Shear Flows (Univ. of Munich), Vol. 1, pp. 741–746Google Scholar
  19. Simonin, O., Deutsch, E., Minier, J.P. (1993): “Eulerian Prediction of the Fluid/Particle Correlated Motion in Turbulent Two-Phase Flows”, Applied Scientific Research, Vol. 51, pp. 275–283MATHCrossRefGoogle Scholar
  20. Sommerfeld, M., Qiu, H.H. (1991): “Detailed Measurements in a Swirling Particulate Two- Phase Flow by a Phase-Doppler Anemometer”, Int. J. Heat and Fluid Flow, Vol. 12, pp. 20–28CrossRefGoogle Scholar
  21. Squires, K.D., Eaton, J.K. (1991): “Measurements of Particle Dispersion Obtained from Direct Simulations of Isotropic Turbulence”, J. Fluid Mech., Vol. 226, pp. 1–35ADSCrossRefGoogle Scholar
  22. Tchen, C.M. (1947): “Mean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Fluid”, Ph.D. thesis, DelftGoogle Scholar
  23. Wells, M.R., Stock, D.E. (1983): “The Effects of Crossing Trajectories on the Dispersion of Particles in a Turbulent Flow”, J. Fluid Mech., Vol. 136, pp. 31–62ADSCrossRefGoogle Scholar
  24. Yeh, F., Lei, U. (1991): “On the Motion of Small Particles in a Homogeneous Turbulent Shear Flow”, Phys. Fluids, Vol. 3, pp. 2758–2775ADSMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • O. Simonin
    • 1
  • E. Deutsch
    • 1
  • M. Boivin
    • 1
  1. 1.Laboratoire National d’Hydraulique, EDFChatouFrance

Personalised recommendations