Skip to main content

Structure of Heat Transfer in the Thermal Layer Growing in a Fully Developed Turbulent Flow

  • Conference paper

Abstract

An experimental investigation of the transport processes of heat has been made in the thermal entrance region of a fully developed turbulent pipe flow. Statistical quantities closely related to turbulent heat transfer have been measured and analyzed. Basic data presented can be used for assessing or developing a turbulence model for heat transfer. Turbulence quantities such as the temperature intermittency factor and the skewness and flatness factors of temperature fluctuations are found to have similarities in the growing thermal layer. Also, from the results of conditional analyses, the weighted probability density function of a turbulent heat flux, and the wavelet transform of velocity and temperature fluctuations, it becomes evident that the ejection-type fluid motions dominate the heat transfer in the outer intermittent region and play a key role in the evolution of the thermal boundary layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonia, R. A., Phan-Thien, N., Chambers, A. J. (1980): Taylor’s hypothesis and the probability density functions of temporal velocity and temperature derivatives in a turbulent flow. J. Fluid Mech. 100, 193–208

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Blackwell, B. F., Kays, W. M., Moffat, R. J. (1972): The turbulent boundary layer on a porous plate: an experimental study of the heat transfer behavior with adverse pressure gradients. Rep. No HMT-16, Thermosciences Division, Dept. of Mechanical Engineering, Stanford University

    Google Scholar 

  • Farge, M. (1992): Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457

    Article  MathSciNet  ADS  Google Scholar 

  • Hedley, T. B., Keffer, J. F. (1974): Turbulent/non-turbulent decisions in an intermittent flow. J. Fluid Mech. 64, 625–644

    Article  ADS  Google Scholar 

  • Hishida, M., Nagano, Y. (1978): Simultaneous measurements of velocity and temperature in nonisothermal flows. Trans. ASME, J. Heat Transfer 100, 340–345

    Article  Google Scholar 

  • Hishida, M., Nagano, Y. (1979): Structure of turbulent velocity and temperature fluctuations in fully developed pipe flow. Trans. ASME, J. Heat Transfer 101, 15–22

    Article  Google Scholar 

  • Kasagi, N., Tomita, Y., Kuroda, A. (1992): Direct numerical simulation of passive scalar field in a turbulent channel flow. Trans. ASME, J. Heat Transfer 114, 598–606

    Article  Google Scholar 

  • Kibens, V. (1968): “The intermittent region of a turbulent boundary layer”, Ph.D. Thesis, Johns Hopkins University

    Google Scholar 

  • Kim, J., Moin, P. (1989): “Transport of passive scalars in a turbulent channel flow”, in Turbulent Shear Flows 6 ( J.-C. André, J. Cousteix, F. Durst, B. E. Launder, F. W. Schmidt, J. H. Whitelaw eds) ( Springer-Verlag, Berlin, Heidelberg ), pp. 85–96

    Google Scholar 

  • Krishnamoorthy, L. V., Antonia, R. A. (1987): Temperature-dissipation measurements in a turbulent boundary layer. J. Fluid Mech. 176, 265–281

    Article  ADS  Google Scholar 

  • Lumley, J. L. (1978): “Computational modeling of turbulent flows”, in Advances in Applied Mechanics 18 ( C.-S. Yih, ed) (Academic Press ), pp. 123–176

    Google Scholar 

  • Lyons, S. L., Hanratty, T. J., McLaughlin, J. B. (1991): Direct numerical simulation of passive heat transfer in a turbulent channel flow. Int. J. Heat Mass Transfer 34, 1149–1161

    Article  Google Scholar 

  • Monin, A. S., Yaglom, A. M. (1971): Statistical Fluid Mechanics, Vol. 1, MIT Press, Cambridge

    Google Scholar 

  • Nagano, Y., Hishida, M. (1985): “Production and dissipation of turbulent velocity and temperature fluctuations in fully developed pipe flow”, in Proceedings of 5th Symposium on Turbulent Shear Flows, Ithaca, USA, pp. 14. 19–14. 24

    Google Scholar 

  • Nagano, Y., Hishida, M. (1990): “Turbulent heat transfer associated with coherent structures near the wall”, in Near-Wall Turbulence (S. J. Kline, N. H. Afgan, eds) (Hemisphere ), pp. 568–581

    Google Scholar 

  • Nagano, Y., Tagawa, M. (1988): Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196, 157–185

    Article  ADS  MATH  Google Scholar 

  • Nagano, Y., Tagawa, M. (1991): “Turbulence model for triple velocity and scalar correlations”, in Turbulent Shear Flows 7(F. Durst, B. E. Launder, W. C. Reynolds, F. W. Schmidt, J. H. Whitelaw eds) ( Springer-Verlag, Berlin, Heidelberg ), pp. 47–62

    Chapter  Google Scholar 

  • Sreenivasan, K. R., Antonia, R. A. (1977): Skewness of temperature derivatives in turbulent shear flows. Phys. Fluids 20, 1986–1988

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagano, Y., Sato, H., Tagawa, M. (1995). Structure of Heat Transfer in the Thermal Layer Growing in a Fully Developed Turbulent Flow. In: Durst, F., Kasagi, N., Launder, B.E., Schmidt, F.W., Suzuki, K., Whitelaw, J.H. (eds) Turbulent Shear Flows 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78823-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78823-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78825-3

  • Online ISBN: 978-3-642-78823-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics