Computation of Oscillating Turbulent Flows at Transitional Re-Numbers

  • K. Hanjalić
  • S. Jakirlić
  • I. Hadžić

Abstract

The paper describes the application of a second moment closure to the computations of oscillating boundary layers, channel- and pipe flows at transitional and higher Reynolds numbers. The model reproduced well the ‘conditional turbulence’ with sudden turbulence bursts and subsequent relaminarization in the oscillating boundary layers in the whole range of transitional Reynolds numbers in accord with results of direct numerical simulation and experiments. Predictions of turbulence dynamics in the outer region of a channel or pipe show also a good qualitative agreement with experimental records.

Keywords

Anisotropy Attenuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibson M.M., Launder B.E. (1978): “Ground effects on pressure fluctuations in the atmospheric boundary layer”, J. Fluid Mech. 86, 491–511ADSMATHCrossRefGoogle Scholar
  2. Ha Minh H., Viegas J.R., Rubesin M.W., Vandromme D.D., Spalart P.R. (1989): Physical Analysis and Second-Order Modelling of an Unsteady Turbulent Flow: The Oscillating Boundary Layer on a Flat Plate”, Proc. 7th Symp. on Turbulent Shear Flows, Stanford University, Paper 11–5.Google Scholar
  3. Hanjalić K., Jakirlić S. (1993): “A Model of Stress Dissipation in Second-Moment Closures”, Applied Scientific Research 51,513–518, ed. F.T.M. Nieuwstadt, Advances in Turbulence IV, Kluwer Academic Publishers.Google Scholar
  4. Hanjalić K., Launder B.E. (1976): “Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence”, J. Fluid Mech. 74, 593–610ADSMATHCrossRefGoogle Scholar
  5. Hino M., Sawamoto M., Takasu S. (1976): “Experiments on transition to turbulence in an oscillatory pipe flow”, J. Fluid Mech. 75, 193–207ADSCrossRefGoogle Scholar
  6. Hino M., Kashiwayanagi M., Nakayama A., Hara T. (1983): “Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow”, J. Fluid Mech. 131, 363–400ADSCrossRefGoogle Scholar
  7. Jensen B.L, Sumer B.M., Fredsoe J. (1989): “Turbulent oscillatory boundary layers at high Reynolds numbers”, J. Fluid Mech. 206, 265–297ADSCrossRefGoogle Scholar
  8. Koehler W. J., Patankar S.V., Ibele W.E. (1991): “Numerical prediction of turbulent oscillating flow in a circular pipe”, (unavailable)Google Scholar
  9. Launder B.E., Reynolds W.C. (1983): “Asymptotic near wall stress dissipation rates in a turbulent flow”, Phys. Fluids 26, 1157ADSMATHCrossRefGoogle Scholar
  10. Launder B.E., Shima N. (1989): “Second-Moment Closure for the Near-Wall Sublayer: Development and Application”, AIAA J. 27, 1319–1325ADSCrossRefGoogle Scholar
  11. Seume J.R. (1988): Ph.D. thesis, Univ. Minnesota.Google Scholar
  12. Shima N. (1993): “Prediction of Turbulent Boundary Layers With a Second-Moment Closure: Part I - Effects of Periodic Pressure Gradient, Wall Transpiration and Free-Stream Turbulence”, J. Fluid Eng. 115, 56–69CrossRefGoogle Scholar
  13. Spalart P.R., Baldwin B.S. (1989): “Direct Simulation of a Turbulent oscillating Boundary Layer”, Turbulent Shear Flows 6, ed. J. C. André et al, Springer-Verlag, 417–440Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • K. Hanjalić
    • 1
  • S. Jakirlić
    • 1
  • I. Hadžić
    • 1
    • 2
  1. 1.Lehrstuhl für Strömungsmechanik Friedrich-Alexander Universität Cauerstr. 4ErlangenGermany
  2. 2.University of SarajevoBosnia Hercegovina

Personalised recommendations