Skip to main content

Fine Structure of Reynolds Shear Stress in an Unsteady Turbulent Channel Flow

  • Conference paper
  • 344 Accesses

Abstract

The modulation characteristics of the Reynolds shear stresses in an unsteady channel flow are presented. The imposed frequency covers a large range going from the quasi-steady limit to 2 times the ejection frequency at y + = 15. The time mean contributions of the quadrants to the Reynolds shear stress are unaffected by the imposed unsteadiness. The contributions of the second and fourth quadrants are strongly modulated near the imposed frequency in wall units f + ≈ 0.002, where the modulation of the ejection frequency is weak and the phase shift with respect to the centerline velocity is maximum. In the low frequency regime the ejection frequency is modulated as the wall shear stress according to the quasi-steady behaviour, and the decline in its response in the high imposed frequency regime stretches from the near-wall to the outer layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfredsson, P.H., Johansson, A.V. (1984): On the detection of turbulence generating events. J. Fluid Mech. 139, 325

    Article  ADS  Google Scholar 

  • Bogard, D.G. and Tiederman, W.G. (1986): Burst detection with a single point velocity measurements. J. Fluid Mech. 162, 389

    Article  ADS  Google Scholar 

  • Bogard, D.G. (1982):”Investigation of burst structures in turbulent channel flows through simultaneous visualization and velocity measurements”, Ph.D. Thesis, Purdue University

    Google Scholar 

  • Brereton, G.J., Reynolds, W.C., and Jarayaman, R. (1990): Response of a turbulent boundary layer to sinusoidal free-stream unsteadiness. J. Fluid Mech. 221, 131

    Article  ADS  Google Scholar 

  • Brereton, G.J., Reynolds, W.C. (1991): Dynamic response of boundary-layer turbulence to oscillatory shear. Phys. Fluids A 3 (1), 178

    Article  ADS  Google Scholar 

  • Brodkey, R.S., Wallace, J.M., Eckelmann, H. (1974): Some properties of truncated turbulence signals in a bounded shear flow. J. Fluid Mech. 63, 209

    Article  ADS  Google Scholar 

  • Brooke, J.W., Hanratty, T.J. (1993): Origin of turbulence- producing eddies in a channel flow. Phys. Fluids A 5 (4), 1011

    Article  ADS  MATH  Google Scholar 

  • Feng, M.Q., Tardu, S., Binder, G. (1993): “Inner region of unsteady channel flow”, in Near Wall Turbulent Flows ( R.M.C. So, C.G. Speziale and B.E. Launder eds) ( Elsevier Science Publishers, Amsterdam, London, New-York, Tokyo ), p. 457

    Google Scholar 

  • Finnicum, D.S., Hanratty, T.J. (1987): Pressure gradient effects in the viscous wall region of a turbulent flow. Rep. No 7, Dept. of Chemical Engineering, University of Illinois

    Google Scholar 

  • Finnicum, D.S., Hanratty, T.J. (1988): Influence of imposed flow oscillations on turbulence. PCH PhysicoChem. Hydrodyn. 10, 585

    Google Scholar 

  • Hon, T.L., Walker, J.D.A (1987): An analysis of the motion and effects of hairpin vortices. AFOSR Rep. FM-11, Dept. Mechanical Engineering, Lehigh University

    Google Scholar 

  • Kim, J., Moin, P.R., Moser, R. (1987): Turbulence statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133

    Article  ADS  MATH  Google Scholar 

  • Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W. (1967): The structure of turbulent boundary layers. J. Fluid Mech. 30, 741

    Article  ADS  Google Scholar 

  • Lueptow, R.M., Breuer, K.S. and Haritonidis, J.H. (1988): Computer aided calibration of X probes using a look-up table. Experiments in Fluids 6, 115

    ADS  Google Scholar 

  • Mao, Z.X., Hanratty, T.J. (1986): Studies of wall shear stress in a turbulent pulsating pipe flow. J. Fluid Mech. 170, 454

    Article  Google Scholar 

  • Smith, C.R., Walker, J.D.A., Haidari, A.H., Sobrun, U. (1991): On the dynamics of near wall turbulence. Phil. Trans. Roy. Soc. 336, 131

    Article  ADS  MATH  Google Scholar 

  • Tardu S., Binder, G., Blackwelder, R. (1987): “Modulation of bursting by periodic oscillations imposed on channel flow” in Proc. of 6th International Symposium on Turbulent Shear Flows, Toulouse, France, p. 4. 5. 1

    Google Scholar 

  • Tardu, S., Binder, G. (1992): Response of bursting to imposed oscilations of high frequencies. J. Fluid Mech. In Revision

    Google Scholar 

  • Tardu, S., Binder, G. (1993): Response of turbulence to imposed oscillations of high frequencies. Physics of Fluids-A, 5 (8), 2028

    Article  ADS  Google Scholar 

  • Tardu, S., Binder, G., Blackwelder, R.F. (1994): Turbulent channel flow subjected to large imposed velocity oscillations. J. Fluid Mech. In Press

    Google Scholar 

  • Wallace, J.M., Eckelmann, H., Brodkey, R.S. (1972): The wall region in turbulent shear flow. J. Fluid Mech. 204, 57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tardu, S., Feng, M.Q., Binder, G. (1995). Fine Structure of Reynolds Shear Stress in an Unsteady Turbulent Channel Flow. In: Durst, F., Kasagi, N., Launder, B.E., Schmidt, F.W., Suzuki, K., Whitelaw, J.H. (eds) Turbulent Shear Flows 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78823-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78823-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78825-3

  • Online ISBN: 978-3-642-78823-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics