Skip to main content

Direct and Large-Eddy Simulations of Transition of a Supersonic Boundary Layer

  • Conference paper
Turbulent Shear Flows 9

Abstract

The forced transition of a temporal boundary layer over an adiabatic flat plate is simulated by means of direct and large-eddy simulations, for an external Mach number of 4.5 and an initial Reynolds number of 10 000. The basic state is composed of a laminar flow, 2D perturbations mostly composed of Mack’s second mode, plus 3D white noise. In both simulations, a first transient is observed: Kelvin-Helmholtz-like vortices develop at the height of the generalized inflection point. Due to oblique subharmonic modes, they start three-dimensionalizing as in mixing layers at high convective Mach numbers. Then, the turbulent activity abruptly shifts towards the wall, in the forms of streaks mostly. Immediately after, the LES shows these streaks breaking down into turbulence at smaller scale, with coherent hairpin vortices (DNS are no longer possible). The flow then presents strong analogies with turbulent incompressible boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, N.A., Kleiser, L. 1993a: Numerical simulation of transition in a compressible flat plate boundary layer, Transitional and Turbulent Compressible flows, ASME 1993, 151, pp. 101–110.

    Google Scholar 

  • Benney, D.J., Gustavsson, L.H. 1981: A new mechanism for linear and nonlinear hydrodynamic instability, Stud. Appl. Math., 64, 185–209.

    MathSciNet  ADS  MATH  Google Scholar 

  • Comte, P., Fouillet, Y., Lesieur, M. 1992: Simulation numerique des zones de mélange compressibles, Revue Scientifique et Technique de la Défense, 3, 43–63.

    Google Scholar 

  • Fisher, M.C., Weinstein, L.M. 1972: Cone transitional boundary-layer structure at Me = 14, AIAA J, 10, 5, 699–701.

    Article  ADS  Google Scholar 

  • Fouillet, Y. 1991: Contribution á l’étude par expérimentation numérique des écoulements cisaillés libres: effets de compressibilité, Thése de l’lnstitut National Polytechnique de Grenoble.

    Google Scholar 

  • Gottlieb, D., Turkel, E. 1976: Dissipative two-four methods for time-dependent problems, Math. Comp., 30, (136), 703–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Landahl, M.T. 1980: A note on an algebraic instability of inviscid parallel shear flows, J. Fluid Mech., 98, 243–251.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mack, L.M. 1969: Boundary-layer stability theory, Jet Propulsion Lab., Pasadena, Calif., rep. No 900–277.

    Google Scholar 

  • Maise G., Mac Donald, M. 1968: AIAA J, 6, 73.

    Article  ADS  Google Scholar 

  • Métais, O., Lesieur, M. 1992: Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid Mech, 239, 157–194.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Michel, R. 1967: Couches limites - frottement et transfert de chaleur. Cours E.N.S.A.E.

    Google Scholar 

  • Morkovin, M. V. 1961: Effects of compressibility on turbulent flows. In Mécanique de la Turbulence, colloque CNRS No- 108, ed. C.N.R.S., pp. 367–380.

    Google Scholar 

  • Ng, L.L., Erlebacher, G. 1992: Secondary instabilities in compressible boundary layers, Phys. Fluids A, 4 (1992)710.

    Article  ADS  MATH  Google Scholar 

  • Normand, X. 1990: Transition á la turbulence dans les écoulements cisaillés compressibles libres et parietaux. Thése, Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Normand, X., Lesieur, M. 1992: Direct and large-eddy simulations of transition in the compressible boundary Layer, Theor. and Comp. Fluid Dyn., 3 p. 231.

    Article  ADS  MATH  Google Scholar 

  • Pruett, C.D., Zang, T.A. 1992: Direct numerical simulation of laminar breakdown in highspeed, axisymmetric boundary layers, Theor. and Comp. Fluid Dyn., 3 345–367.

    Article  ADS  MATH  Google Scholar 

  • Sandham, N.D., Reynolds, W.C. 1991: Three-dimensional simulations of the compressible mixing layer, J. Fluid Mech., 224, 133.

    Article  ADS  MATH  Google Scholar 

  • Schlichting, H. 1979: Boundary-layer theory. McGraw-Hill, New-york, seventh edition.

    MATH  Google Scholar 

  • Schmidt, P.J., Henningson, D.S. 1992: A new mechanism for rapid transition involving a pair of oblique waves, Phys. Fluids A, 4 (1992) 1986.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ducros, F., Comte, P., Lesieur, M. (1995). Direct and Large-Eddy Simulations of Transition of a Supersonic Boundary Layer. In: Durst, F., Kasagi, N., Launder, B.E., Schmidt, F.W., Suzuki, K., Whitelaw, J.H. (eds) Turbulent Shear Flows 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78823-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78823-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78825-3

  • Online ISBN: 978-3-642-78823-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics