Helium-Like Atoms in Magnetic Fields of Arbitrary Strengths

  • Hanns Ruder
  • Günter Wunner
  • Heinz Herold
  • Florian Geyer
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

As shown in the previous chapters our knowledge of hydrogen-like systems in magnetic fields of arbitrary strength is fairly good and complete although at some points further investigations are necessary. By contrast the knowledge of atomic data for helium-like atoms in strong magnetic fields is much more fragmentary. In those atoms the nonseparability of the three-body problem appears as an additional complicating fact to the competing symmetries of the Coulomb and Lorentz forces. As already discussed in our historical review in Sect. 1.2 only the lowest triplet and singlet states have been treated in some detail so far.

Keywords

Helium lOsT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canuto, V., and Ventura, J. (1977): Quantizing Magnetic Fields in Astrophysics. Fundam. Cosmic Phys. 2, 203.ADSGoogle Scholar
  2. Drake, G.W.F. (1993): High-precision calculations for the Rydberg states of helium. In Long-Range Casimir Forces: Theory and Recent Experiments on Atomic Systems, Levin, F.S., and Micha, D.A. (eds.), Plenum Press, New York, 107Google Scholar
  3. Fenimore, E.E., Conner, J.P., Epstein, R.I., Klebesadel, R.W., Laros, J.G., Yoshida, A., Fujii, M., Hayashida, K., Itoh, M., Murakami, T., Nishimura, J., Yamagami, T., Kondo, I., and Kawai, N. (1988): Interpretations of multiple absorption features in a gamma-ray burst spectrum. Astrophys. J. 335: L71.CrossRefADSGoogle Scholar
  4. Froese-Fischer, C. (1977): The Hartree-Fock Method for Atoms: A Numerical Approach, Wiley, New York.Google Scholar
  5. Froese-Fischer, C. (1978): A general multi-configuration Hartree-Fock program. Comput. Phys. Commun. 14, 145.CrossRefADSGoogle Scholar
  6. Garstang, R.H., and Kemic, S.B. (1974): Hydrogen and helium spectra in large magnetic fields. Astrophys. Space Sci. 31, 103.CrossRefADSGoogle Scholar
  7. Kemic, S.B. (1974b): Wavelengths and strengths of hydrogen and helium transitions in large magnetic fields. JILA Report 113, Univ. of Colorado.Google Scholar
  8. Krivec, R., Haftel, M.I., and Mandelzweig, V.B. (1991): Precise nonvariational calculation of excited states of helium with the correlation-function hyperspherical-harmonic method. Phys. Rev. A 44, 7158.CrossRefADSGoogle Scholar
  9. Larsen, D.M. (1979): Variational studies of bound states of the H- ion in a magnetic field. Phys. Rev. B 20, 5217.CrossRefADSGoogle Scholar
  10. Miller, M.C., and Neuhauser, D. (1991): Atoms in very strong magnetic fields. Mon. Not. R. astr. Soc. 253, 107.ADSGoogle Scholar
  11. Mueller, R.O., Rau, A.R.P., and Spruch, L. (1975): Lowest energy levels of H-, He, and Li+ in intense magnetic fields. Phys. Rev. A 11, 789.CrossRefADSGoogle Scholar
  12. Pekeris, C.L. (1958): Ground state of two-electron atoms. Phys. Rev. 112, 1649.CrossRefMATHADSMathSciNetGoogle Scholar
  13. Pröschel, P., Rösner, W., Wunner, G., Ruder, H., and Herold, H. (1982): Hartree-Fock calculations for atoms in strong magnetic fields. I: energy levels of two-electron systems. J. Phys. B: At. Mol. Phys. 15, 1959.CrossRefADSGoogle Scholar
  14. Schmidt, G.D., Latter, W.B., and Foltz, C.B. (1990): On the spectrum and field strength of the magnetic white dwarf GD 229. Astrophys. J. 350, 758.CrossRefADSGoogle Scholar
  15. Simola, J., and Virtamo, J. (1978): Energy levels of hydrogen atoms in a strong magnetic field. J. Phys. B: At. Mol. Phys. 11, 3309.CrossRefADSGoogle Scholar
  16. Ventura, J. (1989): Radiation from cooling neutron stars. Timing Neutron Stars, H. Ogelman, E.P.J. van den Heuvel (eds.), Kluwer Academic Publishers, Dordrecht 1989, 491.Google Scholar
  17. Vincke, M., and Baye, D. (1989): Variational study of H- and He in strong magnetic fields. J. Phys. B: At. Mol. Opt. Phys. 22, 2089.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Hanns Ruder
    • 1
  • Günter Wunner
    • 2
  • Heinz Herold
    • 1
  • Florian Geyer
    • 1
  1. 1.Theoretische AstrophysikUniversität TübingenTübingenGermany
  2. 2.Theoretische Physik, Lehrstuhl 1Ruhr-Universität BochumBochumGermany

Personalised recommendations