Skip to main content

Methods of Solution for the Magnetized Coulomb Problem

  • Chapter
Atoms in Strong Magnetic Fields

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 206 Accesses

Abstract

Measuring energies in units of the Rydberg energy E , lengths in units of the Bohr radius a 0, and the magnetic field strength in units of B 0, the Hamiltonian of an electron in a static Coulomb potential and in a uniform magnetic field then reads for spin-down states

$$^{H = - \Delta - \frac{2} {r} + 2\beta {l_z} + {\beta ^2}{\varrho ^2} - 2\beta }$$
((3.1))

where the magnetic field is assumed to point in the z-direction and ϱ 2 = x 2+y 2. The energies of the corresponding spin-up states are obtained by simply adding . The eigenstates of (3.1) can be classified according to z-parity π and the z-component l z of orbital angular momentum, which are exact symmetries of H, but in general no further separation of the two-dimensional problem is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., and Stegun I.A. (1972): Handbook of mathematical functions, Dover Publications, New York.

    MATH  Google Scholar 

  • Canuto, V., and Ventura, J. (1977): Quantizing magnetic fields in astrophysics. Fundam. Cosmic Phys. 2, 203.

    ADS  Google Scholar 

  • Clark, C.W., and Taylor, K.T. (1980): The quadratic Zeeman effect in hydrogen Rydberg series. J. Phys. B: At. Mol. Phys. 13, L737.

    Article  ADS  Google Scholar 

  • Clark, C.W., and Taylor, K.T. (1982): The quadratic Zeeman effect in hydrogen Rydberg series: application of Sturmian functions. J. Phys. B: At. Mol. Phys. 15, 1175.

    Article  ADS  Google Scholar 

  • Davidson, E. (1975): The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87.

    Article  MATH  ADS  Google Scholar 

  • Delande, D., and Gay, J.C. (1984): Group theory applied to the hydrogen atom in a strong magnetic field. Derivation of the effective diamagnetic Hamiltonian. J. Phys. B: At. Mol. Phys. 17, L335.

    Article  ADS  MathSciNet  Google Scholar 

  • Edmonds, A.R. (1973): Studies of the quadratic Zeeman effect. I. Application of the sturmian functions. J. Phys. B: At. Mol. Phys. 6, 1603.

    Article  ADS  Google Scholar 

  • Englefield, M.J. (1971): Group Theory and the Coulomb Problem, Wiley, New York.

    Google Scholar 

  • Ericsson, T., and Ruhe, A. (1980): The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math. Comput. 35, 1251.

    MATH  MathSciNet  Google Scholar 

  • Friedrich, H. (1982): Bound-state spectrum of the hydrogen atom in strong magnetic fields. Phys. Rev. A 26, 1827.

    Article  ADS  Google Scholar 

  • Froese-Fischer, C. (1977): The Hartree-Fock Method for Atoms: A Numerical Approach, Wiley, New York.

    Google Scholar 

  • Froese-Fischer, C. (1978): A general multi-configuration Hartree-Fock program. Comput. Phys. Commun. 14, 145.

    Article  ADS  Google Scholar 

  • Geyer, F. (1987): Berechnung der Photoionisation des Positroniums in Pulsar magnet osphären und von Wasserstoffenergiewerten in Weißen-Zwerg-Magnetfeldern. PhD thesis, Univ. Tübingen.

    Google Scholar 

  • Herrick, D.R. (1982): Symmetry of the quadratic Zeeman effect for hydrogen. Phys. Rev. A 26, 323.

    Article  ADS  MathSciNet  Google Scholar 

  • Pröschel, P. (1982): Hartree-Fock-Rechnungen in extrem starken magnetischen Feldern. PhD thesis, Univ. Erlangen.

    Google Scholar 

  • Pröschel, P., Rösner, W., Wunner, G., Ruder, H., and Herold, H. (1982): Hartree-Fock calculations for atoms in strong magnetic fields. I: energy levels of two-electron systems. J. Phys. B: At. Mol. Phys. 15, 1959.

    Article  ADS  Google Scholar 

  • Rösner, W., Herold, H., Ruder, H., and Wunner, G. (1983): Approximate solution of the strongly magnetized hydrogenic problem with the use of an asymptotic property. Phys. Rev. A 28, 2071.

    Article  ADS  Google Scholar 

  • Schiff, L.I., and Snyder, H. (1939): Theory of the quadratic Zeeman effect. Phys. Rev. 55, 59.

    Article  MATH  ADS  Google Scholar 

  • Simola, J., and Virtamo, J. (1978): Energy levels of hydrogen atoms in a strong magnetic field. J. Phys. B: At. Mol. Phys. 11, 3309.

    Article  ADS  Google Scholar 

  • Wintgen, D. (1985): Das Wasserstoffatom im starken Magnetfeld. PhD thesis, TU München.

    Google Scholar 

  • Wintgen, D., and Friedrich, H. (1986a): Matching the low-field region and the high-field region for the hydrogen atom in a uniform magnetic field. J. Phys. B: At. Mol. Phys. 19, 991.

    Article  ADS  Google Scholar 

  • Wintgen, D., and Friedrich, H. (1986b): Approximate separability for the hydrogen atom in a uniform magnetic field. J. Phys. B: At. Mol. Phys. 19, 1261.

    Article  ADS  Google Scholar 

  • Wunner, G., Kost, M., and Ruder, H. (1986a): “Circular” states of Rydberg atoms in strong magnetic fields. Phys. Rev. A 33, 1444.

    Google Scholar 

  • Wunner, G. (1986): Note on the usefulness of perturbation theory in calculating energy levels and transitions of hydrogen Rydberg atoms in strong magnetic fields. J. Phys. B: At. Mol. Phys. 19, 1623.

    Article  ADS  Google Scholar 

  • Zeller, G. (1990): Berechnung von Rydbergzuständen des Wasserstoffatoms in starken Magnetfeldern und Anwendungen in der Quantenchaologie. PhD thesis, Univ. Tübingen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruder, H., Wunner, G., Herold, H., Geyer, F. (1994). Methods of Solution for the Magnetized Coulomb Problem. In: Atoms in Strong Magnetic Fields. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78820-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78820-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78822-2

  • Online ISBN: 978-3-642-78820-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics