Advertisement

Highly Excited States

  • Hanns Ruder
  • Günter Wunner
  • Heinz Herold
  • Florian Geyer
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

In the previous chapters we have discussed in much detail the influence of strong magnetic fields on low-lying states. The crucial point in the whole discussion was that the atoms were allowed to be exposed to magnetic fields of such strengths as to make the effects of the magnetic field of the same order of magnitude as, or even larger than, the Coulomb binding forces acting in low-lying states in the atom. We had already noted in Sect. 3.1.1 that the reference magnetic field, which is obtained by setting electrons on Bohr orbits and requiring the equality of Lorentz and Coulomb forces, scales with the inverse cube of the principal quantum number n p
$${B_{np}} = \frac{{{B_0}}}{{{2_{n_p^3}}}} \approx \frac{{4.70 \times {{10}^5}T}}{{{2_{n_p^3}}}} \approx 8.3{\left( {\frac{{30}}{{{n_p}}}} \right)^3}T,$$
(10.1)
so that the strong-field situation, which is encountered for low-lying states only in the field strengths of white dwarfs or neutron stars, can be realized for highly excited states (n p > 30, e.g.) even in terrestrial laboratory field strengths of several Tesla. The discussion of the influence of strong laboratory magnetic fields on highly excited states of the hydrogen atom is the subject of this chapter.

Keywords

Periodic Orbit Strong Magnetic Field Rydberg State Principal Quantum Number Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayfield, J. E., and Koch, P. M. (1974): Multiphoton ionization of highly excited hydrogen atoms. Phys. Rev Lett. 33, 258.CrossRefADSGoogle Scholar
  2. Berry, M. (1987): Quantum Chaology — The Bakerian Lecture 1987. Proc. R. Soc. London A 413, 183.CrossRefADSGoogle Scholar
  3. Berry, M. (1989): Quantum chaology, not quantum chaos. Phys. Scri. 40, 335.CrossRefzbMATHADSGoogle Scholar
  4. Blümel, R., and Smilansky, U. (1984): Quantum mechanical suppression of classical stochasticity in the dynamics of periodically perturbed surface-state electrons. Phys. Rev. Lett. 52, 137.CrossRefADSGoogle Scholar
  5. Blümel, R., and Smilansky, U. (1987): Microwave ionization of highly excited hydrogen atoms. Z. Phys. D: At. Mol. Clusters 6, 83.CrossRefGoogle Scholar
  6. Bohigas, O., Giannoni, M. J., and Schmit, C. (1984a): Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1.CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. Bohigas, O., Giannoni, M. J., and Schmit, C. (1984b): Spectral properties of the Laplacian and random matrix theories. J. Phys. Lett. 45, L1015.CrossRefGoogle Scholar
  8. Casati, G., Chirikov, B. V., Izrailev, F. M., and Ford, J., in Casati, G., and Ford, J. (eds) (1979): Stochastic Behaviour of Classical and Quantum Hamiltonian Systems. Lecture Notes in Physics, Vol. 93, Springer-Verlag Berlin, Heidelberg, New York, p. 334.Google Scholar
  9. Casati, G., Chirikov, B. V., Guarneri, I., and Shepelyansky, D. L., (1986): Dynamical stability of quantum “chaotic” motion in a hydrogen atom. Phys. Rev. Lett. 56, 2437.CrossRefADSGoogle Scholar
  10. Casati, G., Guarneri, I., and Shepelyansky, D. L., (1988): Hydrogen atom in momochromatic field: Chaos and dynamical photonic localization. IEEE J. Quantum Electron. 24, 1420.CrossRefADSGoogle Scholar
  11. Clark, C.W., and Taylor, K.T. (1982): The quadratic Zeeman effect in hydrogen Rydberg series: application of Sturmian functions. J. Phys. B: At. Mol. Phys. 15, 1175.CrossRefADSGoogle Scholar
  12. Delande, D., and Gay, J.C. (1986): Quantum chaos and statistical properties of energy levels: numerical study of the hydrogen atom in a magnetic field. Phys. Rev. Lett. 57, 2006.Google Scholar
  13. Delande, D., Bommier, A., and Gay, J.C. (1991): Positive-energy spectrum of the hydrogen atom in a magnetic field. Phys. Rev. Lett. 66, 141.CrossRefADSGoogle Scholar
  14. Friedrich, H., and Wintgen, D. (1989): The hydrogen atom in a uniform magnetic field — an example of chaos. Phys. Rep. 183, 37.CrossRefADSMathSciNetGoogle Scholar
  15. Galvez, E.J., Sauer, B.E., Moorman, L., Koch, P.M., and Richards, D. (1988): Microwave ionization of H atoms: breakdown of classical dynamics for high frequencies. Phys. Rev. Lett. 61, 2011.CrossRefADSGoogle Scholar
  16. Gay, J.-C. (ed.) (1990): From Regular to Irregular Atomic Physics. Comments At. Mol. Phys 25, 1; also appeared as a book (1990), Gordon & Breach, Science Publishers S. A.Google Scholar
  17. Gutzwiller, M. C. (1980): Classical quantization of a Hamiltonian with ergodic behavior. Phys. Rev. Lett. 45, 150.CrossRefADSGoogle Scholar
  18. Gutzwiller, M. C. (1990): Chaos in Classical and Quantum Mechanics. Springer-Verlag New York, Berlin, Heidelberg.zbMATHGoogle Scholar
  19. Haake, F. (1991): Quantum Signatures of Chaos. Springer-Verlag Berlin, Heidelberg, New York.zbMATHGoogle Scholar
  20. Hasegawa, H., Robnik, M., and Wunner, G. (1989): Classical and Quantal Chaos in the Diamagnetic Kepler Problem. Prog. Theor. Phys. Suppl. 98, 198.CrossRefADSMathSciNetGoogle Scholar
  21. Heller, E. J. (1984): Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53, 1515.CrossRefADSMathSciNetGoogle Scholar
  22. Holle, A., Wiebusch, G., Main, J., Hager, B., Rottke, H., and Welge, K.H. (1986): Diamagnetism of the hydrogen atom in the quasi-Landau regime. Phys. Rev. Lett. 56, 2594.CrossRefADSGoogle Scholar
  23. Holle, A., Wiebusch, G., Main, J., Welge, K.H., Zeller, G., Wunner, G., Ertl, T., and Ruder, H. (1987): Hydrogenic Rydberg atoms in strong magnetic fields: theoretical and experimental spectra in the transition region from regularity to irregularity. Z. Phys. D: At. Mol. Clusters 5, 279.CrossRefGoogle Scholar
  24. Holle, A., Main, J., Wiebusch, G., Rottke, H., and Welge, K.H. (1988): Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom. Phys. Rev. Lett. 61, 161.CrossRefADSGoogle Scholar
  25. Iu, C., Welch, G.R., Kash, M.M., Kleppner, D., Delande, D., and Gay, J.C. (1991): Diamagnetic Rydberg atom: Confrontation of calculated and observed spectra. Phys. Rev. Lett. 66, 145.CrossRefADSGoogle Scholar
  26. Jensen, R.V., Susskind, S.M., and Sanders, M.M. (1991): Chaotic ionization of highly excited hydrogen atoms: Comparison of classical and quantum theory with experiment. Phys. Rep. 201, 1.CrossRefADSGoogle Scholar
  27. Leopold, J. G., and Percival, I. C. (1979): Ionisation of highly excited atoms by electric fields: III. Microwave ionisation and excitation. J. Phys. B: At. Mol. Phys. 12, 709.CrossRefADSGoogle Scholar
  28. Main, J., Wiebusch, G., Holle, A., and Welge, K.H. (1986): New quasi-Landau structure of highly excited atoms: The hydrogen atom. Phys. Rev. Lett. 57, 2789.CrossRefADSGoogle Scholar
  29. Reinhardt, W. P. (1982): Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 33, 223.CrossRefADSGoogle Scholar
  30. Schweizer, W., Niemeier, R., Friedrich, H., Wunner, G., and Ruder, H. (1988): Liapunov Exponents for Classical Orbits of the Hydrogen Atom in a Magnetic Field. Phys. Rev. A, 38, 1724.CrossRefADSGoogle Scholar
  31. Schweizer, W., Niemeier, R., Wunner, G., and Ruder, H. (1993): The diamagnetic Kepler problem: Bifurcations and catastrophes. Z. Phys. D: At. Mol. Clusters, 25, 95.CrossRefGoogle Scholar
  32. Solov’ev, E. A. (1982a): Approximate motion integral for a hydrogen atom in a magnetic field. Sov. Phys. JETP Lett. 34, 265.ADSGoogle Scholar
  33. Solov’ev, E. A. (1982b): The hydrogen atom in a weak magnetic field. Sov. Phys. JETP 55, 1017.Google Scholar
  34. Takahashi, K. (1989a): Similarity and essential difference between coarse-grained classical and quantum mechanics. J. Phys. Soc. Jpn. 58, 3514.CrossRefADSGoogle Scholar
  35. Takahashi, K. (1989b): Distribution functions in classical and quantum mechanics. Prog. Theor. Phys. Suppl. 98, 109.CrossRefADSGoogle Scholar
  36. van Leeuwen, K. A. H., v. Oppen, G., Renwick, S., Bowlin, J. B., Koch, P. M., Jensen, R. V., Rath, O., Richards, D., and Leopold, J. G. (1985): Microwave ionization of hydrogen atoms: Experiment versus classical dynamics. Phys. Rev. Lett. 55, 2231.CrossRefADSGoogle Scholar
  37. Wintgen, D., and Friedrich, H. (1986c): Regularity and irregularity in spectra of the magnetized hydrogen atom. Phys. Rev. Lett. 57, 571.CrossRefADSGoogle Scholar
  38. Wintgen, D., and Friedrich, H. (1987): Classical and quantum-mechanical transition between regularity and irregularity in a hamiltonian system. Phys. Rev. A 35, 1464.CrossRefADSGoogle Scholar
  39. Wunner, G., Woelk, U., Zech, I., Zeller, G., Ertl, T., Geyer, F., Schweizer, W., and Ruder, H. (1986b): Rydberg atoms in uniform magnetic fields: uncovering the transition from regularity to irregularity in a quantum system. Phys. Rev. Lett. 57, 3261.CrossRefADSGoogle Scholar
  40. Zeller, G. (1990): Berechnung von Rydbergzuständen des Wasserstoffatoms in starken Magnetfeldern und Anwendungen in der Quantenchaologie. PhD thesis, Univ. Tübingen.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Hanns Ruder
    • 1
  • Günter Wunner
    • 2
  • Heinz Herold
    • 1
  • Florian Geyer
    • 1
  1. 1.Theoretische AstrophysikUniversität TübingenTübingenGermany
  2. 2.Theoretische Physik, Lehrstuhl 1Ruhr-Universität BochumBochumGermany

Personalised recommendations