Advertisement

Introduction

  • Hanns Ruder
  • Günter Wunner
  • Heinz Herold
  • Florian Geyer
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

The discovery of huge magnetic fields in the vicinity of white dwarf stars (B ≈ 102–105 T) (Kemp et al. 1970; Angel 1978; Angel et al. 1981) and neutron stars (B ≈ 107–109 T) (Trümper et al. 1977; Trümper et al. 1978) has opened the possibility of studying the properties of matter under conditions which can never be realized in terrestrial laboratories. (Rapidly time-variable magnetic fields over nuclear dimensions with peak values up to B ≈ 1011 T are assumed to occur in heavy-ion collisions, cf. Rafelski and Müller 1976). White dwarf stars and neutron stars represent final stages of stellar evolution. Neutron stars are formed from normal stars in a dramatic cosmic event, when the star has consumed its nuclear energy supply and becomes unstable against its own gravitational forces. The catastrophic collapse to a neutron star is usually accompanied by a supernova explosion, in which the star becomes almost as bright as a whole galaxy consisting of a hundred billion suns. Typical values of relevant physical parameters are listed in Table 1.1 in comparison with our sun.

Keywords

Neutron Star Magnetic Field Strength Accretion Disk Strong Magnetic Field White Dwarf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich, C., and Greene, R.L. (1979): Hydrogen-like systems in arbitrary magnetic fields. Phys. Stat. Sol. b 93, 343.ADSCrossRefGoogle Scholar
  2. Alijah, A., Hinze, J., and Broad, J.T. (1990): Photoionisation of hydrogen in a strong magnetic field. J. Phys. B: At. Mol. Opt. Phys. 23, 45.ADSCrossRefGoogle Scholar
  3. Angel, J.R.P. (1978): Magnetic white dwarfs. Ann. Rev. Astron. Astrophys. 16, 487.ADSCrossRefGoogle Scholar
  4. Angel, J.R.P., Borra, E.F., and Landstreet, J.D. (1981): The magnetic fields of white dwarfs. Astrophys. J. Suppl. Ser. 45, 457.ADSCrossRefGoogle Scholar
  5. Angel, J.R.P., Liebert, J., and Stockman, H.S. (1985): The optical spectrum of hydrogen at 160–350 million gauss in the white dwarf Grw + 70°8247. Astrophys. J. 292, 260.ADSCrossRefGoogle Scholar
  6. Avron, J.E., Herbst, I.W., and Simon B. (1978): Separation of center of mass in homogeneous magnetic fields. Ann. Phys. (N.Y.) 114, 431.zbMATHADSMathSciNetCrossRefGoogle Scholar
  7. Baye, D. (1982): An approximate constant of motion for the problem of an atomic ion in a homogeneous magnetic field. J. Phys. B: At. Mol. Phys. 15, L795.ADSCrossRefGoogle Scholar
  8. Baye, D. (1983): Separation of centre-of-mass motion for a charged two-body system in a homogeneous magnetic field. J. Phys. A: Math. Gen. 16, 3207.ADSMathSciNetCrossRefGoogle Scholar
  9. Baye, D., and Vincke, M. (1984): A simple variational basis for the study of hydrogen atoms in strong magnetic fields. J. Phys. B: At. Mol. Phys. 17, L631.ADSCrossRefGoogle Scholar
  10. Baye, D., and Vincke, M. (1986): Centre-of-mass energy of hydrogenic ions in a magnetic field. J. Phys. B: At. Mol. Phys. 19, 4051.ADSCrossRefGoogle Scholar
  11. Bender, C.M., Mlodinow, L.D., and Papanicolaou, N. (1982): Semiclassical perturbation theory for the hydrogen atom in a uniform magnetic field. Phys. Rev. A 25, 1305.ADSCrossRefGoogle Scholar
  12. Brandi, H.S., Santos, R.R., and Miranda, L.C.M. (1976): Hydrogen atoms in strong magnetic fields: oscillator strengths. Lett. Nuovo Cimento 16, 187.ADSCrossRefGoogle Scholar
  13. Burdyuzha, V.V., and Pavlov-Verevkin, V.B. (1981): The spectrum of the hydrogen atom and hydrogenlike ions in the magnetic field of a neutron star. Sov. Astron. 25, 187.ADSGoogle Scholar
  14. Cabib, D., Fabri, E., and Fiorio, G. (1971): The ground state of the exciton in a magnetic field. Solid State Commun. 9, 1517.ADSCrossRefGoogle Scholar
  15. Cizek, J., and Vrscay, E.R. (1982): Large order perturbation theory in the context of atomic and molecular physics — interdisciplinary aspects. Int. J. Quantum Chem. 21, 27.CrossRefGoogle Scholar
  16. Clark, C.W., and Taylor, K.T. (1982): The quadratic Zeeman effect in hydrogen Rydberg series: application of Sturmian functions. J. Phys. B: At. Mol. Phys. 15, 1175.ADSCrossRefGoogle Scholar
  17. Cohen, M., and Herman, G. (1981): The hydrogen atom in strong magnetic fields. J. Phys. B: At. Mol. Phys. 14, 2761.ADSCrossRefGoogle Scholar
  18. Cohen, M. H., Putney, A., and Goodrich, R. W. (1993): The strong magnetic field in G227–35. Astrophys. J. 405, L67.ADSCrossRefGoogle Scholar
  19. Delande, D., and Gay, J.C. (1981): On a possible dynamical symmetry in diamagnetism. Phys. Lett. 82A, 393.ADSGoogle Scholar
  20. Delande, D., and Gay, J.C. (1984): Group theory applied to the hydrogen atom in a strong magnetic field. Derivation of the effective diamagnetic Hamiltonian. J. Phys. B: At. Mol. Phys. 17, L335.ADSMathSciNetCrossRefGoogle Scholar
  21. Delande, D., Bommier, A., and Gay, J.C. (1991): Positive-energy spectrum of the hydrogen atom in a magnetic field. Phys. Rev. Lett. 66, 141.ADSCrossRefGoogle Scholar
  22. Doman, B.G.S. (1980): Relativistic energy levels of hydrogen in strong magnetic fields. J. Phys. B: At. Mol. Phys. 13, 3335.ADSCrossRefGoogle Scholar
  23. Forster, H., Strupat, W., Rösner, W., Wunner, G., Ruder, H., and Herold, H., (1984): Hydrogen atoms in arbitrary magnetic fields: II. Bound-bound transitions. J. Phys. B: At. Mol. Phys. 17, 1301.ADSCrossRefGoogle Scholar
  24. Friedrich, H. (1982): Bound-state spectrum of the hydrogen atom in strong magnetic fields. Phys. Rev. A 26, 1827.ADSCrossRefGoogle Scholar
  25. Friedrich, H., and Chu, M. (1983): Autoionizing states of the hydrogen atom in strong magnetic fields. Phys. Rev. A 28, 1423.ADSCrossRefGoogle Scholar
  26. Friedrich, H., and Wintgen, D. (1989): The hydrogen atom in a uniform magnetic field — an example of chaos. Phys. Rep. 183, 37.ADSMathSciNetCrossRefGoogle Scholar
  27. Garstang, R.H., and Kemic, S.B. (1974): Hydrogen and helium spectra in large magnetic fields. Astrophys. Space Sci. 31, 103.ADSCrossRefGoogle Scholar
  28. Garstang, R.H. (1977): Atoms in high magnetic fields. Rep. Prog. Phys. 40, 105.ADSCrossRefGoogle Scholar
  29. Garstang, R.H. (1982): High magnetic field spectroscopy in astrophysics. J. Phys. (Paris), Colloq. C2 43, 19.Google Scholar
  30. Garton, W.R.S., and Tomkins, F.S. (1969): Diamagnetic Zeeman effect and magnetic configuration mixing in long spectral series of Ba I. Astrophys. J. 158, 839.ADSCrossRefGoogle Scholar
  31. Gay, J.C., Delande, D., Biraben, F., and Penent, F. (1983): Diamagnetism of the hydrogen atom — an elementary derivation of the adiabatic invariant. J. Phys. B: At. Mol. Phys. 16, L693.ADSCrossRefGoogle Scholar
  32. Greene, C.H. (1983): Atomic photoionization in a strong magnetic field. Phys. Rev. A 28, 2209.ADSCrossRefGoogle Scholar
  33. Greenstein, J.L., Henry, R.J.W., and O’Connell, R.F. (1985): Further identifications of hydrogen in Grw+70°8247. Astrophys. J. 289, L25.ADSCrossRefGoogle Scholar
  34. Gutzwiller, M. C. (1990): Chaos in Classical and Quantum Mechanics. Springer-Verlag New York, Berlin, Heidelberg.zbMATHGoogle Scholar
  35. Haake, F. (1991): Quantum Signatures of Chaos. Springer-Verlag Berlin, Heidelberg, New York.zbMATHGoogle Scholar
  36. Handy, C.R., Bessis, D., Sigismondi, G., and Morley, T.D. (1988): Rapidly converging bounds for the ground-state energy of hydrogenic atoms in superstrong magnetic fields. Phys. Rev. Lett. 60, 253.ADSCrossRefGoogle Scholar
  37. Hasegawa, H., and Howard, R.E. (1961): Optical absorption spectrum of hydrogenic atoms in a strong magnetic field. J. Phys. Chem. Solids 21, 179.ADSCrossRefGoogle Scholar
  38. Hasegawa, H., Robnik, M., and Wunner, G. (1989): Classical and quantal chaos in the diamagnetic Kepler problem. Prog. Theor. Phys. Suppl. 98, 198.ADSMathSciNetCrossRefGoogle Scholar
  39. Helfand, D.J., and Huang, J.-H. (eds.), (1987): The Origin and Evolution of Neutron Stars, Reidel Publishing Company, Dordrecht.Google Scholar
  40. Henry, R.J.W., and O’Connell, R.F. (1985): Hydrogen spectrum in magnetic white dwarfs: Hα, Hβ, and Hγ transitions. Publ. Astron. Soc. Pac., 97, 333.ADSCrossRefGoogle Scholar
  41. Henry, R.J.W., O’Connell, R.F., Smith, E.R., Chanmugam, G., and Rajagopal, A.K. (1974): Energy spectrum of H- in a strong magnetic field. Phys. Rev. D 9, 329.ADSCrossRefGoogle Scholar
  42. Herold, H., Ruder, H., and Wunner, G. (1981): The two-body problem in the presence of a homogeneous magnetic field. J. Phys. B: At. Mol. Phys. 14, 751.ADSCrossRefGoogle Scholar
  43. Holle, A., Main, J., Wiebusch, G., Rottke, H., and Welge, K.H. (1988): Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom. Phys. Rev. Lett. 61, 161.ADSCrossRefGoogle Scholar
  44. Hylton, D.J., and Rau, A.R.P. (1980): Longitudinally excited states of hydrogen in intense magnetic fields. Phys. Rev. A 22, 321.ADSCrossRefGoogle Scholar
  45. Iu, C., Welch, G.R., Kash, M.M., Kleppner, D., Delande, D., and Gay, J.C. (1991): Diamagnetic Rydberg atom: Confrontation of calculated and observed spectra. Phys. Rev. Lett. 66, 145.ADSCrossRefGoogle Scholar
  46. Johnson, B.R., Hirschfelder, J.O., and Yang, K.-H. (1983): Interaction of atoms, molecules, and ions with constant electric and magnetic fields. Rev. Mod. Phys. 55, 109.ADSMathSciNetCrossRefGoogle Scholar
  47. Jones, P.B. (1985a): Density functional calculations of the ground-state energies of atoms and infinite linear molecules in very strong magnetic fields. Mon. Not. R. astr. Soc. 216, 503.ADSGoogle Scholar
  48. Jones, P.B. (1985b): Density-functional calculations of the cohesive energy of condensed matter in very strong magnetic fields. Phys. Rev. Lett. 55, 1338.ADSCrossRefGoogle Scholar
  49. Jones, P.B. (1986): Properties of condensed matter in very strong magnetic fields. Mon. Not. R. astr. Soc. 218, 477.ADSGoogle Scholar
  50. Kara, S.M., and McDowell, M.R.C. (1980): Energy levels and bound-bound transitions of hydrogen atoms in strong magnetic fields. J. Phys. B: At. Mol. Phys. 13, 1337.ADSCrossRefGoogle Scholar
  51. Kara, S.M., and McDowell, M.R.C. (1981): The photoionization of atomic hydrogen and hydrogenic ions in intense magnetic fields. J. Phys. B: At. Mol. Phys. 14, 1719.ADSCrossRefGoogle Scholar
  52. Kaschiev, M.S., Vinitsky, S.I., and Vukajlovic, F.R. (1980): Hydrogen atom H and H2 + molecule in strong magnetic fields. Phys. Rev. A 22, 557.ADSCrossRefGoogle Scholar
  53. Kemic, S.B. (1973), PhD thesis, Univ. of Colorado at Boulder.Google Scholar
  54. Kemic, S.B. (1974a): Hydrogen and helium features in magnetic white dwarfs. Astrophys. J. 193, 213.ADSCrossRefGoogle Scholar
  55. Kemic, S.B. (1974b): Wavelengths and strengths of hydrogen and helium transitions in large magnetic fields. JILA Report 113, Univ. of Colorado.Google Scholar
  56. Kemp, J.C., Swedlund, J.B., Landstreet, J.D., and Angel, J.R.P. (1970): Discovery of circularly polarized light from a white dwarf. Astrophys. J. 161, L77.ADSCrossRefGoogle Scholar
  57. Kössl, D., Wolff, R.G., Müller, E., and Hillebrandt, W. (1988): Density functional calculations in strong magnetic fields: The ground state properties of atoms. Astron. Astrophys. 205, 347.ADSGoogle Scholar
  58. Larsen, D.M. (1979): Variational studies of bound states of the H- ion in a magnetic field. Phys. Rev. B 20, 5217.ADSCrossRefGoogle Scholar
  59. Latter, W.B., Schmidt, G.D., and Green, R.F. (1987) The rotationally modulated Zeeman spectrum at nearly 109 Gauss of the white dwarf PG 1031+234. Astrophys. J. 320, 308.ADSCrossRefGoogle Scholar
  60. Le Guillou, J.C., and Zinn-Justin, J. (1983): The hydrogen atom in strong magnetic fields: summation of the weak field series expansion. Ann. Phys. (N. Y.) 147, 57.ADSCrossRefGoogle Scholar
  61. Lindgren, K.A.U., and Virtamo, J.T. (1979): Relativistic hydrogen atom in a strong magnetic field. J. Phys. B: At. Mol. Phys. 12, 3465.ADSCrossRefGoogle Scholar
  62. Liu, C.-R., and Starace, A.F. (1987): Atomic hydrogen in a uniform magnetic field: Low-lying energy levels for fields above 109 G. Phys. Rev. A 35, 647.ADSCrossRefGoogle Scholar
  63. Loudon, R. (1959): One-dimensional hydrogen atom. Am. J. Phys. 27, 649.ADSCrossRefGoogle Scholar
  64. Mega, C., Herold, H., Rösner, W., Ruder, H., and Wunner, G. (1984): Approximate continuum wave functions for the strongly magnetized hydrogenic problem. Phys. Rev. A 30, 1507.ADSCrossRefGoogle Scholar
  65. de Melo, L.C., Das, T.K., Ferreira, R.C., Miranda, L.C.M., and Brandi, H.S. (1978): The H+ 2 molecule in strong magnetic fields, studied by the method of linear combinations of orbitais. Phys. Rev. A 18, 12.ADSCrossRefGoogle Scholar
  66. Miller, M.C., and Neuhauser, D. (1991): Atoms in very strong magnetic fields. Mon. Not. R. astr. Soc. 253, 107.ADSGoogle Scholar
  67. Monteiro, T.S., and Taylor, K.T. (1990): The H2 molecule in a magnetic field. J. Phys. B: At. Mol. Opt. Phys. 23, 427.ADSCrossRefGoogle Scholar
  68. Mueller, R.O., Rau, A.R.P., and Spruch, L. (1975): Lowest energy levels of H-, He, and Li+ in intense magnetic fields. Phys. Rev. A 11, 789.ADSCrossRefGoogle Scholar
  69. Müller, E. (1984): Variational calculation of iron and helium atoms and molecular chains in superstrong magnetic fields. Astron. Astrophys. 130, 415.Google Scholar
  70. Nagase, F. (1989): Accretion-Powered X-Ray Pulsars. Publ. Astron. Soc. Japan 41, 1.ADSMathSciNetGoogle Scholar
  71. Neuhauser, D., Langanke, K., and Koonin, S.E. (1986): Hartree-Fock calculations of atoms and molecular chains in strong magnetic fields. Phys. Rev. A 33, 2084.ADSCrossRefGoogle Scholar
  72. O’Connell, R.F. (1979): Effect of the proton mass on the spectrum of the hydrogen atom in a strong magnetic field. Phys. Lett. 70A, 389.ADSGoogle Scholar
  73. O’Mahony, P.F. (1989): Quasi-Landau modulations in nonhydrogenic systems in a magnetic field. Phys. Rev. Lett. 63, 2653.ADSCrossRefGoogle Scholar
  74. O’Mahony, P.F., and Mota-Furtado, F. (1991): Continuum spectrum of an atom or molecule in a magnetic field. Phys. Rev. Lett. 67, 2283.ADSCrossRefGoogle Scholar
  75. O’Mahony, P.F., and Taylor, K.T. (1986a): Quadratic Zeeman effect for nonhydrogenic systems: application to the Sr and Ba atoms. Phys. Rev. Lett. 57, 2931.ADSCrossRefGoogle Scholar
  76. O’Mahony, P.F., and Taylor, K.T. (1986b): The quadratic Zeeman effect in caesium: departures from hydrogenic behaviour. J. Phys. B: At. Mol. Phys. 19, L65.CrossRefGoogle Scholar
  77. Ozaki, J., and Tomishima, Y. (1981): Energies of the H+ 2 ion in strong magnetic fields. Phys. Lett. 82A, 449.ADSGoogle Scholar
  78. Park, C.-H. and Starace, A.F. (1984): H- and He in a uniform magnetic field: Ground-state wave functions, energies, and binding energies for fields below 109 G. Phys. Rev. A 29, 442.ADSCrossRefGoogle Scholar
  79. Pavlov-Verevkin, V.B., and Zhilinskii, B.I. (1980a): The hydrogen atom in a superstrong magnetic field. Phys. Lett. 75A, 279.ADSGoogle Scholar
  80. Pavlov-Verevkin, V.B., and Zhilinskii, B.I. (1980b): Neutral hydrogen-like system in a magnetic field. Phys. Lett. 78A, 244.ADSGoogle Scholar
  81. Peek, J.M. and Katriel, J. (1980): Hydrogen molecular ion in a high magnetic field. Phys. Rev. A 21, 413.ADSCrossRefGoogle Scholar
  82. Potekhin, A. Yu., and Pavlov, G. G. (1993): Photoionization of the hydrogen atom in strong magnetic fields. Astrophys. J. 407, 330.ADSCrossRefGoogle Scholar
  83. Praddaude, H.C. (1972): Energy levels of hydrogenlike atoms in a magnetic field. Phys. Rev. A 6, 1321.ADSCrossRefGoogle Scholar
  84. Pringle, J.E., and Wade, R.A. (eds.), (1985): Interacting binary stars, Cambridge University Press.Google Scholar
  85. Pröschel, P., Rösner, W., Wunner, G., Ruder, H., and Herold, H. (1982): Hartree-Fock calculations for atoms in strong magnetic fields. I: energy levels of two-electron systems. J. Phys. B: At. Mol. Phys. 15, 1959.ADSCrossRefGoogle Scholar
  86. Rafelski, J., and Müller, B. (1976): Magnetic Splitting of Quasimolecular Electronic States in Strong Fields. Phys. Rev. Lett. 36, L517.ADSCrossRefGoogle Scholar
  87. Rech, P.C., Gallas, M.R., and Gallas, J.A.C. (1986): Zeeman diamagnetism in hydrogen at arbitrary field strengths. J. Phys. B: At. Mol. Phys. 19, L215.ADSCrossRefGoogle Scholar
  88. Rösner, W., Herold, H., Ruder, H., and Wunner, G. (1983): Approximate solution of the strongly magnetized hydrogenic problem with the use of an asymptotic property. Phys. Rev. A 28, 2071.ADSCrossRefGoogle Scholar
  89. Rösner, W., Wunner, G., Herold, H., and Ruder, H. (1984): Hydrogen atoms in arbitrary magnetic fields: I. Energy levels and wavefunctions. J. Phys. B: At. Mol. Phys. 17, 29.ADSCrossRefGoogle Scholar
  90. Rosen, G. (1986): Rigorous analytical lower bound on the ground-state energies of hydrogenic atoms in high magnetic fields. Phys. Rev. A 34, 1556.ADSCrossRefGoogle Scholar
  91. Ruder, H., Wunner, G., Herold, H., and Reinecke, M. (1981a): On the validity of perturbation calculations of energy levels and transitions of hydrogen atoms in strong magnetic fields. J. Phys. B: At. Mol. Phys. 14, L45.ADSCrossRefGoogle Scholar
  92. Ruder, H., Wunner, G., Herold, H., and Trümper, J. (1981b): Iron lines in superstrong magnetic fields. Phys. Rev. Lett. 46, 1700.ADSCrossRefGoogle Scholar
  93. Schiff, L.I., and Snyder, H. (1939): Theory of the quadratic Zeeman effect. Phys. Rev. 55, 59.zbMATHADSCrossRefGoogle Scholar
  94. Schmidt, G.D., West, S.C., Liebert, J., Green, R.F., and Stockman, H.S. (1986b): The new magnetic white dwarf PG 1031+234: polarization and field structure at more than 500 million gauss. Astrophys. J. 309, 218.ADSCrossRefGoogle Scholar
  95. Schmitt, W., Herold, H., Ruder, H., and Wunner, G. (1981): The photoionization of the hydrogen atom in strong magnetic fields. Astron. Astrophys. 94, 194.zbMATHADSGoogle Scholar
  96. Schwope, A. D., Beuermann, K., Jordan, S., and Thomas, H.-C. (1993): Cyclotron and Zeeman spectroscopy of MR Serpent is in low and high states of accretion. Astron. Astrophys. 278, 487.ADSGoogle Scholar
  97. Shapiro, S.L., and Teukolsky, S.A. (1983): Black Holes, White Dwarfs, and Neutron Stars, Wiley and Sons, New York.CrossRefGoogle Scholar
  98. Shertzer, J. (1989): Finite-element analysis of hydrogen in superstrong magnetic fields. Phys. Rev. A 39, 3833.ADSCrossRefGoogle Scholar
  99. Shertzer, J., Ram-Mohan, L.R., and Dossa, D. (1989): Finite-element calculation of low-lying states of hydrogen in a superstrong magnetic field. Phys. Rev. A 40, 4777.ADSCrossRefGoogle Scholar
  100. Simola, J., and Virtamo, J. (1978): Energy levels of hydrogen atoms in a strong magnetic field. J. Phys. B: At. Mol. Phys. 11, 3309.ADSCrossRefGoogle Scholar
  101. Smith, E.R., Henry, R.J.W., Surmelian G.L., O’Connell, R.F., and Rajagopal, A.K. (1972): Energy spectrum of the hydrogen atom in a strong magnetic field. Phys. Rev. D 6, 3700.ADSCrossRefGoogle Scholar
  102. Smith, E.R., Henry, R.J.W., Surmelian G.L., and O’Connell, R.F. (1973a): Hydrogen atom in a strong magnetic field: bound-bound transitions. Astrophys. J. 179, 659.ADSCrossRefGoogle Scholar
  103. Smith, E.R., Henry, R.J.W., Surmelian G.L., and O’Connell, R.F. (1973b): Erratum. Astrophys. J. 182, 651.ADSCrossRefGoogle Scholar
  104. Starace, A.F., and Webster, G.L. (1979): Atomic hydrogen in a uniform magnetic field: Lowlying energy levels for fields below 109 G. Phys. Rev. A 19, 1629.ADSCrossRefGoogle Scholar
  105. Surmelian, G.L., Henry, R.J.W., and O’Connell, R.F. (1974): Energy spectrum of He I and H- in a strong magnetic field. Phys. Lett. 49A, 431.ADSGoogle Scholar
  106. Thurner, G., Körbel, H., Braun, M., Herold, H., Ruder, H., and Wunner, G. (1993): Hartree-Fock calculations for excited states of two-electron systems in strong magnetic fields. J. Phys. B: At. Mol. Opt. Phys. 26, 4719.ADSCrossRefGoogle Scholar
  107. Trümper, J., Pietsch, W., Reppin, C., Sacco, B., Kendziorra, E., and Staubert, R. (1977): Evidence for strong cyclotron emission in the hard x-ray spectrum of Her X-1. Ann. N. Y. Acad. Sci. 302, 538.ADSCrossRefGoogle Scholar
  108. Trümper, J., Pietsch, W., Reppin, C., Voges, W., Staubert, R., and Kendziorra, E. (1978): Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. Astrophys. J. 219, L105.ADSCrossRefGoogle Scholar
  109. Trümper, J., Lewin, W.H.G., and Brinkmann, W. (eds.), (1986): The Evolution of Galactic X-Ray Binaries, Reidel Publishing Company, Dordrecht.Google Scholar
  110. Vincke, M., and Baye, D. (1989): Variational study of H- and He in strong magnetic fields. J. Phys. B: At. Mol. Opt. Phys. 22, 2089.ADSCrossRefGoogle Scholar
  111. Ventura, J., Herold, H., Ruder, H., and Geyer, F. (1992): Photoabsorption in magnetic neutron star atmospheres. Astron. Astrophys. 261, 235.ADSGoogle Scholar
  112. Watanabe, S. and Komine, H. (1991): Adiabatic-expansion method applied to diamagnetic Rydberg atoms. Phys. Rev. Lett. 67, 3227.ADSCrossRefGoogle Scholar
  113. Wickramasinghe, D.T. and Cropper, M. (1988): Spectropolarimetry of the magnetic white dwarf PG1015+014: evidence for a 100-MG field. Mon. Not. R. astr. Soc. 235, 1451.ADSGoogle Scholar
  114. Wickramasinghe, D.T. and Ferrario, L. (1988): A centered dipole model for the high field magnetic white dwarf Grw+70°8247. Astrophys. J. 327, 222.ADSCrossRefGoogle Scholar
  115. Wille, U. (1987a): Vibrational and rotational properties of the H2 + molecular ion in a strong magnetic field. J. Phys. B: At. Mol. Phys. 20, L417.ADSMathSciNetCrossRefGoogle Scholar
  116. Wille, U. (1987b): Resonant charge transfer in slow H+-H collisions in the presence of a strong magnetic field. Phys. Lett. A 125, 52.ADSCrossRefGoogle Scholar
  117. Williams, A.C., Darbro, W., Weisskopf, M.C., and Eisner, R.F. (1985): Hydrogen-like atoms on the surface of neutron stars — intense magnetic field effects. Astrophys. J. 289, 782.ADSCrossRefGoogle Scholar
  118. Wintgen, D., and Friedrich, H. (1986a): Matching the low-field region and the high-field region for the hydrogen atom in a uniform magnetic field. J. Phys. B: At. Mol. Phys. 19, 991.ADSCrossRefGoogle Scholar
  119. Wintgen, D., and Friedrich, H. (1986b): Approximate separability for the hydrogen atom in a uniform magnetic field. J. Phys. B: At. Mol. Phys. 19, 1261.ADSCrossRefGoogle Scholar
  120. Wintgen, D., and Friedrich, H. (1986c): Regularity and irregularity in spectra of the magnetized hydrogen atom. Phys. Rev. Lett. 57, 571.ADSCrossRefGoogle Scholar
  121. Wunner, G., Ruder, H., and Herold, H. (1980): Comment on the effect of the proton mass on the spectrum of the hydrogen atom in a very strong magnetic field. Phys. Lett. 79A, 159.ADSGoogle Scholar
  122. Wunner, G., and Ruder, H. (1980a): Electromagnetic transitions for the hydrogen atom in strong magnetic fields. Astrophys. J. 242, 828.ADSCrossRefGoogle Scholar
  123. Wunner, G., and Ruder, H. (1981): Hydrogen atom in strong magnetic fields: polynomial approximations for the magnetic-field dependence of the energy values. Astron. Astrophys. 95, 204.ADSGoogle Scholar
  124. Wunner, G., Ruder, H., and Herold, H. (1981a): Energy levels, electromagnetic transitions and annihilation of positronium in strong magnetic fields. J. Phys. B: At. Mol. Phys. 14, 765.ADSCrossRefGoogle Scholar
  125. Wunner, G., Ruder, H., and Herold, H. (1981b): Energy levels and oscillator strengths for the two-body problem in magnetic fields. Astrophys. J. 247, 374.ADSCrossRefGoogle Scholar
  126. Wunner, G., Ruder, H., and Herold, H. (1981c): Quality of one-configuration Hartree-Fock-type calculations for the H atom in arbitrary magnetic fields. Phys. Lett. 85A, 430.ADSGoogle Scholar
  127. Wunner, G., and Ruder, H. (1982): Energy levels and electromagnetic transitions of atoms in superstrong magnetic fields. J. Phys. (Paris), Colloq. C2 43, 137.Google Scholar
  128. Wunner, G., Rösner, W., Ruder, H., and Herold, H. (1982a): Energy values and sum rules for hydrogenic atoms in magnetic fields of arbitrary strength using numerical wave functions: comparison with variational results. Astrophys. J. 262, 407.ADSCrossRefGoogle Scholar
  129. Wunner, G., Ruder, H., Schmitt, W., Herold, H., and McDowell, M.R.C. (1982b): Rigorous and approximate scaling laws for the photoionization cross-section of hydrogenic ions in magnetic fields. Mon. Not. R. astr. Soc. 198, 769.ADSGoogle Scholar
  130. Wunner, G., Herold, H., and Ruder, H. (1982c): Energy values for the H2 + ion in superstrong magnetic fields using the adiabatic approximation. Phys. Lett. 88A, 344.ADSGoogle Scholar
  131. Wunner, G., Ruder, H., Herold, H., and Schmitt, W. (1983b): Cross sections for photoionization and photo-recombination of hydrogenic atoms in strong magnetic fields. Astron. Astrophys. 117, 156.ADSGoogle Scholar
  132. Wunner, G., Rösner, W., Herold, H., and Ruder, H. (1985a): The importance of spin-orbit coupling in the magnetized hydrogen problem. J. Phys. B: At. Mol. Phys. 18, L179.ADSCrossRefGoogle Scholar
  133. Wunner, G., Rösner, W., Herold, H., and Ruder, H. (1985b): Stationary hydrogen lines in white dwarf magnetic fields and the spectrum of the magnetic degenerate Grw+70°8247. Astron. Astrophys. 149, 102.ADSGoogle Scholar
  134. Wunner, G., Geyer, F., and Ruder, H. (1987): Atomic data relevant to line formation in strongly magnetized white dwarf stars. Astrophys. Space Sci. 131, 595.ADSCrossRefGoogle Scholar
  135. Wunner, G., Schweizer, W., and Ruder, H. (1989): Hydrogen Atoms in Strong Magnetic Fields — in the Laboratory and in the Cosmos. The Hydrogen Atom, G.F. Bassani, M. Inguscio, T.W. Hänsch (eds.), Springer-Verlag Berlin, Heidelberg 1989, 300.Google Scholar
  136. Zimmerman, M.L., Kash, M.M., and Kleppner, D. (1980): Evidence of an approximate symmetry for hydrogen in a uniform magnetic field. Phys. Rev. Lett. 45, 1092.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Hanns Ruder
    • 1
  • Günter Wunner
    • 2
  • Heinz Herold
    • 1
  • Florian Geyer
    • 1
  1. 1.Theoretische AstrophysikUniversität TübingenTübingenGermany
  2. 2.Theoretische Physik, Lehrstuhl 1Ruhr-Universität BochumBochumGermany

Personalised recommendations