Advertisement

Electronic Structure and High Tc Superconductivity in the Cuprates

  • J. Bok
  • L. Force
Conference paper

Summary

The origin of superconductivity in the cuprates is attributed to free carriers in the CuO2 planes. These planes are weakly coupled in the c direction so that their electronic properties are nearly 2D. Electrons in a 2D periodic potential show a logarithmic singularity in the density of states called the van Hove singularity (v.H.s.). We assume that the Fermi level lies in the v.H.s. for optimum doping (highest T c). We develop this van Hove scenario and compare its theoretical predictions to experiments.

We show that it explains, high T c’s, variation of T c with doping, anomalous isotope effect, marginal Fermi liquid properties, and very small coherence length. We also take into account the Coulomb repulsion between electrons and show that it does not kill superconductivity if the v.H. peak is above a wide band. Finally we show that in this model we have two stable phases for half filling and optimum doping and perhaps phase separation for intermediate doping.

Keywords

Fermi Level Fermi Surface Coulomb Repulsion Fermi Velocity Optimum Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. van Hove, Phys. Rev. 89, 1189 (1953).ADSMATHCrossRefGoogle Scholar
  2. 2.
    J. Labbé, and J. Bok, Europhysics Letters 3, 1225 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    D.S. Dessau et al, preprint.Google Scholar
  4. 4.
    K. Gofron, and J.C. Campuzano, J. Phys. Chem. Sol. 53, 12, 1577 (1992).CrossRefGoogle Scholar
  5. 5.
    K. Gofron et al, preprint.Google Scholar
  6. 6.
    P.W. Anderson, and P. Morel, Phys. Rev. 125, 4 (1962).CrossRefGoogle Scholar
  7. 7.
    L. Force, and J. Bok, Solid State Comm. 85, 975 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    D.L. Novikov, V.A. Gubanov, and A.J. Freeman, Physica C 210, 301 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    M. Hirao, T. Uda, and Y. Marayama, Physica C 195, 230 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    D.L. Novikov, and A.J. Freeman, Physica C 3, 4 (1993).Google Scholar
  11. 11.
    D.Y. Xing, M. Liu, and C.D. Dong, Phys. Rev. Lett., (comments), to be published.Google Scholar
  12. 12.
    Y. Koike et al, Physica C 159, 105 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    C.C. Tsuei, D.M. Newns, C.C. Chi, and P.C. Pattnaik, Phys. Rev. Lett. 65, 2724 (1990)ADSCrossRefGoogle Scholar
  14. 13a.
    D.M. Newns, C.C. Tsuei, P.C. Pattnaik, and C.L. Kane, Comments Cond. Mat. Physics 15, 273 (1992).Google Scholar
  15. 14.
    G.G. Olson et al, Phys. Rev. B 42, 381 (1990).MathSciNetADSCrossRefGoogle Scholar
  16. 15.
    Z. Schlesinger et al, Phys. Rev. Lett. 67, 1657 (1991).CrossRefGoogle Scholar
  17. 16.
    Y. Kubo et al, Phys. Rev. B 43, 7875 (1991).ADSCrossRefGoogle Scholar
  18. 17.
    M.L. Cohen, and P.W. Anderson in: Superconductivity in d and f band Metals, ed.: D.H. Douglass A.I.P., New York (1972).Google Scholar
  19. 18.
    V. Ginzburg, Comtemporary Physics 33, 1, 15–23 (1992).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. Bok
    • 1
  • L. Force
    • 1
  1. 1.Laboratoire de Physique du SolideCNRS-ESPCIParis cedex 05France

Personalised recommendations