Cytotoxic Glial Swelling by Arachidonic Acid

  • F. Staub
  • A. Winkler
  • J. Peters
  • O. Kempski
  • A. Baethmann
Conference paper
Part of the Advances in Neurosurgery book series (NEURO, volume 22)


Arachidonic acid (AA, 20:4) is a major constituent of membrane phospholipids in brain tissue. Normally, the free fatty acid is present only in a small amount, but it accumulates under adverse conditions, such as ischemia or brain injury [1,9]. The release of free fatty acid involves activation of phospholipases and breakdown of membrane phospholipids. AA in particular is considered to mediate pathological processes. The polyunsaturated compound is a precursor of prostaglandins, leukotrienes, and oxygen-derived free radicals [11]. In cerebral ischemia concentrations of free AA of up to 0.5 mM/kg have been found in brain tissue [9].


Free Fatty Acid Arachidonic Acid Stearic Acid Cytotoxic Brain Edema Modify Minimal Essential Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baethmann A, Maier-Hauff K, Schürer L, Lange M, Guggenbichler C, Vogt W, Jacob K, Kempski O (1989) Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg 70:578–591PubMedCrossRefGoogle Scholar
  2. 2.
    Braughler JM, Hall ED (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289–301PubMedCrossRefGoogle Scholar
  3. 3.
    Chan PH, Fishman RA (1978) Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science 201:358–360PubMedCrossRefGoogle Scholar
  4. 4.
    Chan PH, Chen SF, Yu ACH (1988) Induction of intracellular superoxide radical formation by arachidonic acid and by polyunsaturated fatty acids in primary astrocytic culture. J Neurochem 50:1185–1193PubMedCrossRefGoogle Scholar
  5. 5.
    Frangakis MV, Kimelberg HK (1984) Dissociation of neonatal rat brain by dispase for preparation of primary astrocyte cultures. Neurochem Res 9:1689–1698PubMedCrossRefGoogle Scholar
  6. 6.
    Hillered L, Chan PH (1988) Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. J Neurosci Res 20:451–456PubMedCrossRefGoogle Scholar
  7. 7.
    Kachel V, Glossner E, Kordwig G, Ruhenstroth-Bauer G (1977) Fluvo-Metricell, a combined cell volume and cell fluorescence analyzer. J Histochem Cytochem 25:804–812PubMedCrossRefGoogle Scholar
  8. 8.
    Kempski O, Chaussy L, Groß U, Zimmer M, Baethmann A (1983) Volume regulation and metabolism of suspended C6 glioma cells: an in vitro model to study cytotoxic brain edema. Brain Res 279:217–228PubMedCrossRefGoogle Scholar
  9. 9.
    Kinouchi H, Imaizumi S, Yoshimoto T, Motomiya M (1990) Phenytoin affects metabolism of free fatty acids and nucleotides in rat cerebral ischemia. Stroke 21:1326–1332PubMedCrossRefGoogle Scholar
  10. 10.
    Unterberg A, Wahl M, Hammersen F, Baethmann A (1987) Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid. Acta Neuropathol (Berl) 73:209–219CrossRefGoogle Scholar
  11. 11.
    Wolfe LS (1982) Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem 38:1–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • F. Staub
    • 1
  • A. Winkler
    • 1
  • J. Peters
    • 1
  • O. Kempski
    • 2
  • A. Baethmann
    • 1
  1. 1.Institut für Chirurgische Forschung, Klinikum GroßhadernLudwig-Maximillians-UniversitätMünchenGermany
  2. 2.Institut für Neurochirurgische PathophysiologieJohannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations