Cytotoxic Glial Swelling by Arachidonic Acid

  • F. Staub
  • A. Winkler
  • J. Peters
  • O. Kempski
  • A. Baethmann
Conference paper
Part of the Advances in Neurosurgery book series (NEURO, volume 22)


Arachidonic acid (AA, 20:4) is a major constituent of membrane phospholipids in brain tissue. Normally, the free fatty acid is present only in a small amount, but it accumulates under adverse conditions, such as ischemia or brain injury [1,9]. The release of free fatty acid involves activation of phospholipases and breakdown of membrane phospholipids. AA in particular is considered to mediate pathological processes. The polyunsaturated compound is a precursor of prostaglandins, leukotrienes, and oxygen-derived free radicals [11]. In cerebral ischemia concentrations of free AA of up to 0.5 mM/kg have been found in brain tissue [9].


Permeability Peroxide Ischemia EDTA Superoxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baethmann A, Maier-Hauff K, Schürer L, Lange M, Guggenbichler C, Vogt W, Jacob K, Kempski O (1989) Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg 70:578–591PubMedCrossRefGoogle Scholar
  2. 2.
    Braughler JM, Hall ED (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289–301PubMedCrossRefGoogle Scholar
  3. 3.
    Chan PH, Fishman RA (1978) Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science 201:358–360PubMedCrossRefGoogle Scholar
  4. 4.
    Chan PH, Chen SF, Yu ACH (1988) Induction of intracellular superoxide radical formation by arachidonic acid and by polyunsaturated fatty acids in primary astrocytic culture. J Neurochem 50:1185–1193PubMedCrossRefGoogle Scholar
  5. 5.
    Frangakis MV, Kimelberg HK (1984) Dissociation of neonatal rat brain by dispase for preparation of primary astrocyte cultures. Neurochem Res 9:1689–1698PubMedCrossRefGoogle Scholar
  6. 6.
    Hillered L, Chan PH (1988) Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. J Neurosci Res 20:451–456PubMedCrossRefGoogle Scholar
  7. 7.
    Kachel V, Glossner E, Kordwig G, Ruhenstroth-Bauer G (1977) Fluvo-Metricell, a combined cell volume and cell fluorescence analyzer. J Histochem Cytochem 25:804–812PubMedCrossRefGoogle Scholar
  8. 8.
    Kempski O, Chaussy L, Groß U, Zimmer M, Baethmann A (1983) Volume regulation and metabolism of suspended C6 glioma cells: an in vitro model to study cytotoxic brain edema. Brain Res 279:217–228PubMedCrossRefGoogle Scholar
  9. 9.
    Kinouchi H, Imaizumi S, Yoshimoto T, Motomiya M (1990) Phenytoin affects metabolism of free fatty acids and nucleotides in rat cerebral ischemia. Stroke 21:1326–1332PubMedCrossRefGoogle Scholar
  10. 10.
    Unterberg A, Wahl M, Hammersen F, Baethmann A (1987) Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid. Acta Neuropathol (Berl) 73:209–219CrossRefGoogle Scholar
  11. 11.
    Wolfe LS (1982) Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem 38:1–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • F. Staub
    • 1
  • A. Winkler
    • 1
  • J. Peters
    • 1
  • O. Kempski
    • 2
  • A. Baethmann
    • 1
  1. 1.Institut für Chirurgische Forschung, Klinikum GroßhadernLudwig-Maximillians-UniversitätMünchenGermany
  2. 2.Institut für Neurochirurgische PathophysiologieJohannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations