Advertisement

Allele Frecuency Distributions of Five VNTR Loci (D1S7, D7S21, D12S11, D5S43 and D2S44) in Spain

  • C. Albarrán
  • A. Alonso
  • P. Martín
  • M. Sancho
Conference paper
Part of the Advances in Forensic Haemogenetics book series (HAEMOGENETICS, volume 5)

Abstract

Since the discovery of a hypervariable locus [1] numerous such loci have been found [2–4]. Of particular value and interest are the RFLP-analysis of hypervariable VNTR regions with the single locus probe hybridization technique. These markers have great potencial for individual identification in forensic analysis and paternity testing [5–7]. However, before they can be adopted for routine use in these applications, the allele frecuency distributions must be determinated [8].

Keywords

Unrelated Individual Criminal Case Allele Frequency Distribution Forensic Analysis Paternity Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wyman AR and White R (1980). Proc. Natl. Acad. Sci. USA, 77: 6754–6758.CrossRefGoogle Scholar
  2. [2]
    Jeffreys AJ, Wilson V and Thein SL (1985). Nature, 314: 67–73.PubMedCrossRefGoogle Scholar
  3. [3]
    Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E and White R (1987). Science, 235: 1616–1622.PubMedCrossRefGoogle Scholar
  4. [4]
    Wong Z, Wilson V, Patel J, Povey S and Jeffreys AJ (1987). Ann. Hum. Genet., 51: 269–288.PubMedCrossRefGoogle Scholar
  5. [5]
    Jeffreys AJ, Wilson V and Thein SL (1985). Nature, 316: 76–79.PubMedCrossRefGoogle Scholar
  6. [6]
    Gill P, Lygo JE, Fowler SJ and Werret DJ (1987). Electrophoresis, 8: 38–44.CrossRefGoogle Scholar
  7. [7]
    Smith JC, Newton CR, Alves A, Anwar R, Jenner D and Markham AF (1990). J. Forensic. Sci. Soc., 30: 3–18.PubMedCrossRefGoogle Scholar
  8. [8]
    Second DNA recommendations (1992). Int. J. Leg. Med., 104: 361–364.CrossRefGoogle Scholar
  9. [9]
    Elder JK and Southern EM (1983). Anal. Biochem., 128: 227–231.PubMedCrossRefGoogle Scholar
  10. [10]
    Smith JC; Anwar R, Riley J, Jenner D, Markham AF and Jeffreys AJ (19910). J. Forensic. Sci. Soc., 30: 19 –32.Google Scholar
  11. [11]
    Buffery C, Burridge F, Greenhalgh M, Jones S and Willot G (1991). Forensic. Sci. Int., 52: 53–64.PubMedCrossRefGoogle Scholar
  12. [12]
    Gill P, Woodroffe S, Lygo JE and Millican ES (1991). Int. J. Leg. Med., 104: 221–227.CrossRefGoogle Scholar
  13. [13]
    Brinkmann B, Rand S and Wiegand P (1991). Int. J. Leg. Med., 104: 81–86.CrossRefGoogle Scholar
  14. [14]
    Sajantila A, Makkonen K, Ehnholm C and Peltonen L (1992). Hum. Hered., 42: 372–379.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • C. Albarrán
    • 1
  • A. Alonso
    • 1
  • P. Martín
    • 1
  • M. Sancho
    • 1
  1. 1.Sección de BiologíaInstituto Nacional de ToxicologíaMadridSpain

Personalised recommendations