Advertisement

Use of synthetic peptides for the analysis of B-cell epitopes in autoantigens

  • Sylviane Muller
Conference paper
Part of the NATO ASI Series book series (volume 80)

Abstract

In systemic autoimmune diseases, patients develop antibodies to a variety of cellular components. Like the majority of conventionally induced antibodies, autoantibodies recognize discontinuous epitopes which are made up of amino acid residues that are not contiguous in sequence but are brought together by the folding of the polypeptide chain. Since, short synthetic peptides can, to a certain extent, mimic such conformational epitopes and they can be used in solid-phase assays to replace complex antigens that are often difficult to purify and prepare in large quantities. In recent years the development of improved methods of peptide synthesis and the availability of peptides have stimulated a number of investigations using sera from autoimmune patients that react with various self-proteins such as histones, ubiquitin, polypeptides B/B′ and D of the Sm antigen, polypeptide A of the U1 snRNP antigen, 60 KDa SSA/Ro antigen, phosphorylated ribosomal proteins and E2 (dihydrolipoamide acetyltransferase) mitochondrial antigen. Assays based on the use of synthetic peptides corresponding to sequences within these proteins have proved useful for the detection and in some cases for the discrimination of antibodies present in related systemic and organ-specific autoimmune diseases. In addition to increasing the specificity of immunoassays, the use of peptides offers the possibility of introducing during synthesis modified residues or cofactors (e.g. lipoic acid in E2 antigen) which are normally present in natural molecules.

Keywords

Systemic Lupus Erythematosus Primary Biliary Cirrhosis Lipoic Acid Autoimmune Patient Systemic Lupus Erythematosus Seron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschuh D, A1 Moudallal Z, Briand JP and Van Regenmortel MHV (1985) Immunochemical studies of tobacco mosaic virus. VI. Attempts to localize viral epitopes with monoclonal antibodies. Mol. Immunol. 22: 329–337.Google Scholar
  2. Arents G, Burlingame RW, Wang BC, Love WE and Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88: 10148–10152.Google Scholar
  3. Atanassov C, Briand JP, Bonnier D, Van Regenmortel MHV and Muller S (1991) New Zealand white rabbits immunized with RNA-complexed total histones develop an autoimmune-like response. Clin. exp. Immunol. 86: 124–133.Google Scholar
  4. Baum H, Butler P, Davies H, Sternberg MJE and Burroughs AK (1993) Autoimmune disease and molecular mimicry: an hypothesis. Trends Biochem. Sci. 18: 140–144.Google Scholar
  5. Bell DA and Morrison B (1991) The spontaneous apoptotic cell death of normal human lymphocytes in vitro: the release of, and immunoproliferative response to, nucleosomes in vitro. Clin. Immunol. Immunopathol. 60: 13–26.PubMedCrossRefGoogle Scholar
  6. Berg PA and Klein R (1990) Autoantibodies in primary biliary cirrhosis. Springer Semin. Immunopathol. 12: 85–99.Google Scholar
  7. Bhusate LL, Herbert KE, Scott DL and Perret D (1992) Increased DNA strand breaks in mononuclear cells from patients with rheumatoid arthritis. Ann. Rheum. Dis. 51: 8–1,Google Scholar
  8. Bohm L, Briand G, Sautiere P and Crane-Robinson C (1981) Proteolytic digestion studies of chromatin core-histone structure. Identification of the limit peptides of histones H3 and H4. Eur. J. Biochem. 119: 67–74.Google Scholar
  9. Boitard C (1992) B–cell responses in autoimmune diseases. Curr. Opinion Immunol. 4: 741–747.CrossRefGoogle Scholar
  10. Bradbury EM (1983) Flexibility in chromosomal proteins. In: Mobility and Recognition in Cell Biology ( Sund and Veeger, eds.), Walter de Gruyter, Berlin, pp. 173–194.Google Scholar
  11. Briand JP, Van Dorrselaer A, Raboy B and Muller S (1989) Total chemical synthesis of ubiquitin using BOP reagent: biochemical and immunochemical properties of the purified synthetic product. Peptide Res. 2: 381–388.Google Scholar
  12. Briand JP, André C, Tuaillon N, Hervé L, Neimark J and Muller S (1992) Multiple autoepitope presentation for specific detection of antibodies in primary biliary cirrhosis. Hepathology 16: 1395–1403.CrossRefGoogle Scholar
  13. Carson DA, Seto S, Wasson DB, Carrera CJ (1986) DNA strand breaks, NAD metabolism and programmed cell death. Exp. Cell. Res. 164: 273–281.Google Scholar
  14. Coppel RL, MeNeilage LJ, Surh CD, Van de Water J, Spithill TW, Whittingham S and Gershwin ME (1988) Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydrolipoamide acetyltransferase. Proc. Natl. Acad. Sci. USA 85: 7317–7321.Google Scholar
  15. Costa O and Morder JC (1986) Antihistone antibodies detected by ELISA and immunoblotting in systemic lupus erythematosus and rheumatoid arthritis. J. Rheumatol. 13: 722–725.PubMedGoogle Scholar
  16. Costa O, Tchouatcha-Tchouassom JC, Roux B and Monier JC (1986) Anti-Hl histone antibodies in systemic lupus erythematosus: epitope localization after immunoblotting of chymotrypsin-digested HI. Clin. exp. Immunol. 63: 608–613.Google Scholar
  17. Craft JE, Radding JA, Harding MW, Bernstein RM and Hardin JA (1987) Autoantigenic histone epitopes: a comparison between procainamide-and hydralazine-induced lupus. Arthritis Rheum. 30: 689–694.PubMedCrossRefGoogle Scholar
  18. Creemers P, Monestier M and Böhm L (1992) Epitope recognition in histone HI by SLE autoantibodies in the presence of a DNA-ligand. Autoimmunity 12: 167–174.PubMedCrossRefGoogle Scholar
  19. De Murcia G, Ménissierde Murcia J and Schreiber V (1991) Poly(ADP-ribose) polymerase: molecular biological aspects. BioEssays 13: 455–462.Google Scholar
  20. Drake CG and Kotzin BL (1992) Genetic and immunological mechanisms in the pathogenesis of systemic lupus erythematosus. Curr. Opinion Immunol. 4: 733– 740.Google Scholar
  21. Einck L, Dibble R, Frado L-LY and Woodcock CLF (1988) Nucleosomes as antigens. Exp. Cell Res. 139: 101–110.Google Scholar
  22. Elkon KB (1992) Use of synthetic peptides for the detection and quantification of autoantibodies. Mol. Biol. Rep. 16: 207–212.PubMedCrossRefGoogle Scholar
  23. Gershwin ME and Mackay IR (1991) Primary biliary cirrhosis: paradigm or paradox for autoimmunity. Gastroenterology 100: 822–833.PubMedGoogle Scholar
  24. Gershwin ME, Mackay IR, Sturgess A and Coppel RL (1987) Identification and specificity of a cDNA encoding the 70 Kd mitochondrial antigen recognized in primary biliary cirrhosis. J. Immunol. 138: 3525–3531.PubMedGoogle Scholar
  25. Gohill J, Cary PD, Couppez M and Fritzler MJ (1985) Antibodies from patients with drug-induced and idiopathic lupus erythematosus react with epitopes restricted to the amino and carboxyl termini of histone. J. Immunol. 135: 3116–3121.PubMedGoogle Scholar
  26. Gohill J and Fritzler MJ (1987) Antibodies in procainamide-induced and systemic lupus erythematosus bind the C-terminus of histone 1 (Hl). Mol. Immunol. 24: 275–285.PubMedCrossRefGoogle Scholar
  27. Guldner HH (1992) Mapping of epitopes recognized by anti–(Ul)RNP autoantibodies. Mol. Biol. Rep. 16: 155–164.PubMedCrossRefGoogle Scholar
  28. Hardin JA (1986) The lupus autoantigens and the pathogenesis of systemic lupus erythematosus. Arthritis Rheum. 29: 457–460.PubMedCrossRefGoogle Scholar
  29. Hardin JA and Thomas JO (1983) Antibodies to histones in systemic lupus erythematosus: localization of prominent autoantigens on histones HI and H2B. Proc. Natl. Acad. Sei. USA 80: 7410–7414.CrossRefGoogle Scholar
  30. Hasler P, Brot N, Weissbach H, Parnassa AP and Elkon KB (1991) Ribosomal proteins PO, PI and P2 are phosphorylated by casein kinase II at their conserved carboxyl termini. J. Biol. Chem. 266: 13815–13820.Google Scholar
  31. Haug BL, Sibley JT and Lee JS (1987) Increased synthesis of poly (ADP-ribose) in isolated liver nuclei from autoimmune NZB/NZW mice. FEBS Lett. 215: 252– 256.Google Scholar
  32. Horsfall AC, Hay FC, Soltys AJ and Jones MG (1991) Epitope mapping. Immunol. Today 12: 211–213.Google Scholar
  33. Horsfall AC (1992) Molecular mimicry and autoantigens in connective tissue diseases. Mol. Biol. Rep. 16: 139–147.PubMedCrossRefGoogle Scholar
  34. Huff JP, Roos G, Peebles CL, Houghten R, Sullivan KF, Tan EM (1990) Insights into native epitopes of proliferating cell nuclear antigen (PCNA), using recombinant DNA protein products. J. Exp. Med. 172: 419–429.Google Scholar
  35. Huletsky A, de Murcia G, Muller S, Hengartner M, Menard L, Lamarre D and Poirier GG (1989) The effect of poly(ADP-ribosyl)ation on native and Hl-depleted chromatin. J. Biol. Chem. 264: 8878–8886.Google Scholar
  36. Jones DB, Coulson AFW and Duff GW (1993) Sequence homologies between hsp60 and autoantigens. Immunol. Today 14: 115–118.Google Scholar
  37. Itoh Y and Reichlin M (1992) Autoantibodies to the Ro/SSA antigen are conformation dependent. I: Anti-60 kD antibodies are mainly directed to the native protein; anti-52 Kd antibodies are mainly directed to the denatured protein. Autoimmunity 14: 57–65.PubMedCrossRefGoogle Scholar
  38. Mohan C, Adams S, Stanik V and Datta SK (1993) Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177: 1367–1381.Google Scholar
  39. Monestier M and Kotzin BL (1992) Antibodies to histones in systemic lupus erythematosus and drug-induced lupus syndromes. Rheum. Dis. Clin. North Am. 18: 415–436.PubMedGoogle Scholar
  40. Monestier M, Fasy TM, Losman MJ, Novick KE and Muller S (1993) Structure and binding properties of monoclonal antibodies to core histones from autoimmune mice. Mol. Immunol, in press.Google Scholar
  41. Muller S (1992) Place et rôle de l’ubiquitine dans le développement de l’autoimmunité au cours de la maladie lupique. Médecine/ Sciences 8: 223–232.Google Scholar
  42. Muller S and Van Regenmortel MHV (1993) Histones. In: Structure of Antigens (Van Regenmortel MHV, Ed.) Vol. 2. CRC Press, Boca Raton, pp 149–178.Google Scholar
  43. Muller S, Barakat S, Watts R, Joubaud P and Isenberg D (1990) Longitudinal analysis of antibodies to histones, Sm-D peptides and ubiquitin in the serum of patients with systemic lupus erythematosus, rheumatoid arthritis and tuberculosis. Clin. Exp. Rheum. 8: 445–453.Google Scholar
  44. Muller S, Bonnier D, Thiry M and Van Regenmortel MHV (1989) Reactivity of autoantibodies in systemic lupus erythematosus with systemic core histone peptides. Int. Arch. Allergy Appl. Immunol. 89: 288–296.Google Scholar
  45. Muller S, Briand JP and Van Regenmortel MHV (1988) Presence of antibodies to ubiquitin dduring the autoimmune response associated with systemic lupus erythematosus. Proc. Natl. Acad. Sd. USA 85: 8176–8180.Google Scholar
  46. Muller S, Isabey A, Couppez M, Plaué S, Sommermeyer G and Van Regenmortel MHV (1987) Specificity of antibodies raised against triacetylated histone H4. Mol. Immunol. 24: 779–789.Google Scholar
  47. Muller S, Plaué S, Couppez M and Van Regenmortel MHV (1986) Comparison of different methods for localizing antigenic regions in histone H2A. Mol. Immunol. 23: 593–601.Google Scholar
  48. Muller S, Couppez M, Briand JP, Gordon J, Sautière P and Van Regenmortel MHV (1985) Antigenic structure of histone H2B. Biochim Biophys. Acta 827: 235–246.Google Scholar
  49. Pauls JD, Gohill J and Fritzler MJ (1990) Antibodies from patients with systemic lupus erythematosus and drug-induced lupus bind determinants on histone 5 (H5). Mol. Immunol. 27: 701–711.Google Scholar
  50. Pauls JD, Edworthy SM and Fritzler MJ (1993) Epitope mapping of histone 5 (H5) with systemic lupus erythematosus, procainamide-induced lupus and hydralazine-induced lupus sera. Mol. Immunol. 30: 709–719.Google Scholar
  51. Pettersson I (1992) Methods of epitope mapping. Mol. Biol. Rep. 16: 149–153.PubMedCrossRefGoogle Scholar
  52. Plaué S, Muller S and Van Regenmortel MHV (1989) A branched, synthetic octapeptide of ubiquitinated histone H2A as target of autoantibodies. J. Exp. Med. 169: 1607–1617.Google Scholar
  53. Portanova JP, Arndt RE, Tan EM and Kotzin BL (1987) Anti-histone antibodies in idiopathic and drug-induced lupus recognize distinct intrahistone regions. J. Immunol. 138: 446–451.PubMedGoogle Scholar
  54. Portanova JP, Cheronis JC, Blodgett JK and Kotzin BL (1990) Histone autoantigens in murine lupus. Definition of a major epitope within an accessible region of chromatin. J. Immunol. 144: 4633–4640.Google Scholar
  55. Rokeach LA and Hoch SO (1992) B-cell epitopes of Sm autoantigens., Mol. Biol. Rep. 16: 165–174.CrossRefGoogle Scholar
  56. Sibley JT, Haug BL and Lee JS (1989) Altered metabolism of poly(ADP-ribose) in the peripheral blood lymphocytes of patients with systemic lupus erythematosus. Arthritis Rheum, 32: 1045–1049.PubMedCrossRefGoogle Scholar
  57. Steinberg AD, Krieg AM, Gourley MF and Klinman DM (1990) Theoretical and experimental approaches to generalized autoimmunity. Immunol. Rev. 118: 129–163.Google Scholar
  58. Stetler DA and Jacob ST (1984) Phosphorylation of RNA polymerase I augments its interaction with autoantibodies of systemic lupus erythematosus patients. J. Biol. Chem. 259: 13629–13632.PubMedGoogle Scholar
  59. Surh CD, Coppel RL and Gershwin ME (1990) Structural requirement for autoreactivity on human pyruvate dehydrogenase E2, the major autoantigen of primary biliary cirrhosis. Implication for a conformational autoepitope. J. Immunol. 144: 3367–3374.Google Scholar
  60. Tan EM (1991) Autoantibodies in pathology and cell biology. Cell 67: 841–842.PubMedCrossRefGoogle Scholar
  61. Thibeault L, Hengartner M, Lagueux J, Poirier GG and Muller S (1992) Rearrangements of the nucleosome structure in chromatin by poly(ADP-ribose). Biochim. Biophys. Acta 1121: 317–324.Google Scholar
  62. Tuaillon N, André C, Briand JP, Penner E and Muller S (1992) A lipoyl synthetic octapeptide of dihydrolipoamide acetyltransferase specifically recognized by anti-M2 autoantibodies in primary biliary cirrhosis. J. Immunol. 148: 445–450.PubMedGoogle Scholar
  63. Van de Water J, Gershwin, ME, Leung P, Ansari A and Coppel RL (1988) The autoepitope of the 74 Kd mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydrolipoamide acetyltransferase. J. Exp. Med. 167: 1791–1199.Google Scholar
  64. Van Regenmortel MHV (1993) Synthetic peptides versus natural antigens in immunoassays. Ann. Biol. Clin. 51: 39–41.Google Scholar
  65. Yamanaka H, Willis EH and Carson DA (1989) Human autoantibodies to poly (adenosine diphosphate-ribose) polymerase recognize cross-reactive epitopes associated with the catalytic site of the enzyme. J. Clin. Invest. 83: 180–186.Google Scholar
  66. Yeaman SJ, Danner DJ, Mutimer DJ, Fussey SPM, James OFW and Bassendine MF (1988) Primary biliary cirrhosis: identification of two major M2 mitochondrial autoantigens. Lancet 1: 1067–1070.PubMedCrossRefGoogle Scholar
  67. Zurgil N, Bakimer R, Moutsopoulos HM, Tzioufas AG, Youinou P, Isenberg DA, Scheinberg M, Kveder T, Rozman B, Luderschmidt C, Meroni PL, Kaplan MM and Shoenfeld Y (1992) Antimitochondrial (pyruvate dehydrogenase) autoantibodies in autoimmune rheumatic diseases. J. Clin. Immunol. 12: 201–209.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Sylviane Muller
    • 1
  1. 1.UPR 9021 Immunochimie des Peptides et des VirusInstitut de Biologie Moléculaire et Cellulaire, CNRSStrasbourgFrance

Personalised recommendations