The Expression of Heat Shock Proteins in Systemic Lupus Erythematosus

  • Veena B. Dhillon
  • David S. Latchman
  • David A. Isenberg
Part of the NATO ASI Series book series (volume 80)


The heat shock response (HSR) was discovered in Drosophila buksii over 30 years ago [Ritossa 1962], and subsequently characterized by Tissières et al [1974] who showed that it consisted of the rapid synthesis of a small number of new proteins - the heat shock proteins (hsps) - against a background of repressed general protein synthesis, upon exposure of organisms to a variety of insults. These include hypoxia, glucose deprivation or supplementation, amino acid analogues, oxygen free radicals, cytokines, heavy metals, calcium ionophores, ethanol and many infectious pathogens [Linquist 1986]. The common denominator appears to be the accumulation of unfolded or malfolded proteins in the cell [Gething and Sambrook 1992]. The HSR has been observed in all cell systems, tissues and organisms studied. There is a high degree of homology of hsps phylogenetically. They thus appear to have an important role to play in cell survival. This is borne out by the fact that both the protein-coding and the regulatory sequences of some heat shock genes have been very highly conserved throughout evolution. However, while the HSR is ubiquitous, it is also finely tuned and versatile.


Systemic Lupus Erythematosus Ankylose Spondylitis Heat Shock Protein Systemic Lupus Erythematosus Patient Heat Shock Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson JL, Martin RG, Chang C, Mora PT, Livingston DM. (1977). Nuclear preparations of SV40 transformed cells contain tumor–specific transplantation antigen activity. Virology, 76: 420–5PubMedCrossRefGoogle Scholar
  2. Angelidis E, Lazardis I, Pagoulatos GN. (1991). Constitutive expression of hsp70 in mammalian cells confers thermoresistance. J Biochem FEBS, 199: 35–9CrossRefGoogle Scholar
  3. Amett FC, Edworthy SM, Bloch DA. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum, 31: 315–24CrossRefGoogle Scholar
  4. Bansal GS, Norton PM, Latchman DS. (1991). The 90-kDa heat shock protein protects mammalian cells from thermal stress but not from viral infection. Exp Cell Res, 195 (2): 303–6PubMedCrossRefGoogle Scholar
  5. Batchelor JR, Fielder AHL, Walport MJ. (1987). Family study of the major histocompatibility complex in HLA DR3 negative patients with systemic lupus erythematosus. Clin Exp Immunol, 70: 364–71PubMedPubMedCentralGoogle Scholar
  6. Blake MJ, Fargnoli J, Gershon D, Holbrook NJ. (1991). Concomitant decline irihyperthermia and hsp70 mRNA expression in aged rats. Am J Physiol, 260: 663–7Google Scholar
  7. Bohan A, Peter JB. (1975). Polymyositis and dermatomyositis. New Engl J Med, 292: 344–7PubMedCrossRefGoogle Scholar
  8. Born W, Happ MP, Dallas A, et al. (1990a). Recognition of heat shock proteins and gamma delta cell function. Immunol Today, ll(2): 40–3CrossRefGoogle Scholar
  9. Born W, Hall L, Dallas A, et al. (1990b). Recognition of a peptide antigen by heat shock-reactive gamma/delta T lymphocytes. Science, 249: 67–9PubMedCrossRefGoogle Scholar
  10. Bresnihan B, Oliver M, Williams B, Hughes GRV. (1979). An anti-neuronal antibody cross-reacting with erythrocytes and lymphocytes in systemic lupus erythematosus. Arthritis Rheum, 22 (4): 313–20PubMedCrossRefGoogle Scholar
  11. Burdon RH. (1987). Thermotolerance and the heat shock proteins. Symp Soc Exp Biol, 41: 269–83PubMedGoogle Scholar
  12. Campbell MJ, Gardner MJ. (1989). Calculating confidence intervals for some non-parametric analyses. In: Gardner MJ, Altman DG, eds. Statistics with Confidence. Br Med J, London. Pp 71–9.Google Scholar
  13. Chang CC, Konno S, Wu JM. (1991). Enhanced expression of heat shock protein and mRNA synthesis by type I interferon in human HL-60 leukemic cells. Biochem Int, 24 (2): 369–77PubMedGoogle Scholar
  14. Ciavarra RP, Simeone A. (1990). T lymphocyte stress response. I. Induction of heat shock protein synthesis at febrile temperatures is correlated with enhanced resistance to hyperthermic stress but not to heavy metal toxicity or dexamethasone-induced immunosuppression. Cell Immunol, 129 (2): 363–76PubMedCrossRefGoogle Scholar
  15. Cross AH, Dolich S, Raine CS. (1990). Antigen processing of myelin basic protein is required prior to recognition by T cells inducing EAE. Cell Immunol, 129: 22–31PubMedCrossRefGoogle Scholar
  16. Deguchi Y. (1991). Enhanced expression of hsp gene in kidney lymphoid cells of lupus prone mice during growing process. Autoimmunity, 10: 1–5PubMedCrossRefGoogle Scholar
  17. Deguchi Y, Kishimoto S. (1990). Enhanced expression of hsp gene in peripheral mononuclear cells of patients with active SLE. Ann Rheum Dis, 49: 893–5PubMedCrossRefPubMedCentralGoogle Scholar
  18. Deguchi Y, Negoro S, Kishimoto S. (1988). Age related changes of hsp gene transcription in human peripheral blood mononuclear cells. Biochem Biophys Res Comm, 157 (2): 580–4PubMedCrossRefGoogle Scholar
  19. Deguchi Y, Negoro S, Kishimoto S. (1987). Heat shock protein synthesis by human peripheral mononuclear cells from SLE patients. Biochem Biophys Res Comm, 148 (3): 1063–8PubMedCrossRefGoogle Scholar
  20. Dhillon VB, McCallum S, Norton P, et al. (1993a). Differential heat shock protein overexpression and its clinical relevance in systemic lupus erythematosus. Ann Rheum Dis, 52: 436–442PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dhillon VB, McCallum S, Wilks D, Twomey B, Latchman D, Isenberg D. (1993b). The differential expression of heat shock proteins in rheumatic disease. Brit J Rheum (In press)Google Scholar
  22. Eglin RP, Lehner T, Subak-Sharpe JH. (1982). Detection of RNA complementary to HSV in mononuclear cells from patients with Behcet’s syndrome and recurrent oral ulceration. Lancet, ii: 1356–61Google Scholar
  23. Ehrenstein MR, Swana M, Keeling D, Asherson R, Hughes GRV, Isenberg DA. (1993). Anti-DNA antibodies in the primary anti-phospholipid syndrome ( PAPS ). Br J Rheumatol, 32: 362–5Google Scholar
  24. Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR. (1990). Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65kDa heat shock protein. Proc Natl Acad Sei USA, 87: 1576–80CrossRefGoogle Scholar
  25. Erkeller–Yüksel F, Isenberg DA, Dhillon VB, Latchman DS, Lydyard PM. (1992). Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J Autoimmunity, 5: 803–14Google Scholar
  26. Faassen AE, O’Leary JJ, Rodysill KJ, Bergh N, Hallgren HM. (1989). Diminished heat-shock protein synthesis following mitogen stimulation of lymphocytes from aged donors. Exp Cell Res, 183 (2): 326–34PubMedCrossRefGoogle Scholar
  27. Faulds GB, Isenberg DA, Latchman DS. (1993). The tissue-specific elevation in synthesis of the 90kD heat shock protein preceeds the onset of disease in lupus–prone MRL/lpr mice. J Rheumatol. (In press).Google Scholar
  28. Ferrarini M, Heltai S, Zocchi MF, Rugarli C. (1992). Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer, 51: 613–19PubMedCrossRefGoogle Scholar
  29. Fisch P, Malkovsky M, Kovats S, et al. (1990). Recognition by human Vgamma9/Vdelta2 T cells of a GroEL homologue on Daudi Burkitt’s lymphoma cells. Science, 250 (250): 1269–73PubMedCrossRefGoogle Scholar
  30. Flynn GC, Chappell TG, Rothman JE. (1989). Peptide binding and release by proteins implicated as catalysts of protein assembly. Science, 245: 385–8PubMedCrossRefGoogle Scholar
  31. Friedman SM, Posnett DN, Tumang JR, Cole BC, Crow MK. (1991). A potential role for microbial superantigens in the pathogenesis of systemic autoimmune disease. Arthritis Rheum, 34 (4): 468–80PubMedCrossRefGoogle Scholar
  32. Gaston JS. (1991). Heat shock proteins and autoimmunity. Semin Immunol, 3 (l): 35–42PubMedGoogle Scholar
  33. Geelen JLMC, Minnaar RP, Boom R, van der Noordaa J, Goudsmit J. (1988). Heat shock induction of the human immunodeficiency virus long terminal repeat. J Gen Virol, 69: 2913–7PubMedCrossRefGoogle Scholar
  34. Gething M-J, Sambrook J. (1992). Protein folding in the cell. Nature, 355: 33–45PubMedCrossRefGoogle Scholar
  35. Gladman DD, Goldsmith CH, Urowitz MB. (1992c). Cross-cultural validation and reliability of three disease activity indices in SLE. J Rheumatol, 19: 608–11PubMedGoogle Scholar
  36. Gruppi CM, Zakeri ZF, Wolgemuth DJ. (1991). Stage and lineage-regulated expression of two hsp90 transcripts during mouse germ cell differentiation and embryogenesis. Mol Reprod Dev, 28 (3): 209–17PubMedCrossRefGoogle Scholar
  37. Günther E. (1991). Heat shock protein genes and the major histocompatibility complex. Curr Top Microbiol Immunol, 167: 57–68PubMedGoogle Scholar
  38. Hansen LK, Houchins JP, O’Leary JJ (1991). Differential regulation of HSC70 HSP70 HSP90 alpha and HSP90 beta mRNA expression by mitogen activation and heat shock in human lymphocytes. Exp Cell Res, 192 (2): 587–96PubMedCrossRefGoogle Scholar
  39. Heufelder AE, Wenzel BE, Gorman CA, Bahn RS. (1991). Detection cellular localization and modulation of heat shock proteins in cultured fibroblasts from patients with extrathyroidal manifestations of Graves’ disease. J Clin Endocrinol Metabol, 73 (4): 739–45CrossRefGoogle Scholar
  40. Hoffman P, Houston L, Butler CA. (1990). Legionella pneumophilia htpAB heat shock operon: nucleotide sequence and expression of the 60 kDa antigen in L. pneumophilia-infected HeLa cells. Infect Immun, 58 (10): 3380–7PubMedPubMedCentralGoogle Scholar
  41. Holoshitz J, Koning F, Coligan JE, De Bruyn J, Strober S. (1989). Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature, 339: 226–9PubMedCrossRefGoogle Scholar
  42. Isenberg DA, Rowe A, Tookman A. (1984). An immunohistological study of secondary Sjögren’s syndrome. Ann Rheum Dis, 43: 470–476PubMedCrossRefPubMedCentralGoogle Scholar
  43. Janeway C. (1991). Mis: makes a little sense. Nature, 349: 459–61Google Scholar
  44. Janeway CA Jnr, Jones B, Hayday A. (1988). Specificity and function of T cells bearing gamma/delta receptors. Immunol Today, 9: 73–6CrossRefGoogle Scholar
  45. Jardetzky TS, Lane WS, Robinson RA, Madden DR, Wiley DC. (1991). Identification of self peptides bound to purified HLA–B27. Nature, 353: 326–9PubMedCrossRefGoogle Scholar
  46. Jarjour WN, Jeffries BD, Davis JS 4th, Welch WJ, Mimura T, Winfield JB. (1991). Autoantibodies to human stress proteins. A survey of various rheumatic and other inflammatory diseases. Arthritis Rheum, 34 (9): 1133–8PubMedCrossRefGoogle Scholar
  47. Jenkins DE, Schultz JE, Matin A. (1988). Starvation-induced cross protection against heat or hydrogen peroxide challenge in Escherichia coli. J Bacterid, 170: 3910–4Google Scholar
  48. Karlsson–Parra A, Söderström K, Ferm M, Ivanyi J, Kiessling R, Klareskog L. (1990). Presence of human 65kD heat shock protein (hsp) in inflamed joints and subcutaneous nodules of RA patients. Scand J Immunol, 31: 283–8CrossRefGoogle Scholar
  49. Kaufmann SH, Schoel B, Wand Wurttenberger A, Steinhoff U, Münk ME, Koga T. (1990). T–cells, stress proteins, and pathogenesis of mycobacterial infections. Curr Top Microbiol Immunol, 155:125– 41Google Scholar
  50. Keat A, Thomas B, Hughes R, Taylor Robinson D. (1989). Chlamydia trachomatis in reactive arthritis. Rheumatol Int, 9: 197–200Google Scholar
  51. Koga T, Wand-Württenberger A, Debruyn J, Münk M, Schoel B, Kaufmann SHE. (1989). T cells against a bacterial heat shock protein recognize stressed macrophages. Science, 245: 1112–5PubMedCrossRefGoogle Scholar
  52. Kohda T, Kondo K, Oishi M. (1991). Cellular HSP90 (HSP86) mRNA level and in vitro differentiation of mouse embryonal carcinoma (F9) cells. FEBS Lett, 290 (1–2): 107–10PubMedCrossRefGoogle Scholar
  53. Koyasu S, Nishida E, Kadowaki T, et al. (1986). Two mammalian heat shock proteins HSP90 and HSP100 are actin-binding proteins. Proc Nat Acad Sei USA, 83 (21): 8054–8CrossRefGoogle Scholar
  54. Kubo T, Towle CA, Mankin HJ, Treadwell BV. (1985). Stress induced proteins in chondrocytes from patients with osteoarthritis. Arthritis Rheum, 28 (10): 1140–5PubMedCrossRefGoogle Scholar
  55. LaThangue NB, Latchman DS. (1988). A cellular protein related to heat-shock protein 90 accumulates during herpes simplex virus infection and is overexpressed in transformed cells. Exp Cell Res, 178 (l): 169–79Google Scholar
  56. Lehner T, Barnes CG. (1979). Criteria for the diagnosis and classification of Behcet’s syndrome. In: Lehner T, Barnes CG, eds. Behcet’s Syndrome: Clinical and Immunological Features. Academic Press, London.Google Scholar
  57. Lehner T, Lavery E, Smith R, van der Zee R, Mizushima Y, Shinnock T. (1991). Association of the 65– kD heat shock protein of Streptococcus sanguis and the corresponding antibodies in Behcet’s syndrome. Infect Immunol, 59: 1434–1441.Google Scholar
  58. Life PF, Bassey EOE, Gaston JSH. (1991). T cell recognition of bacterial hsps in inflammatory arthritis. Immunol Rev, 121: 113–135PubMedCrossRefGoogle Scholar
  59. Lindquist S. (1986). The heat shock response. Ann Rev Biochem, 55: 1151–1191PubMedCrossRefGoogle Scholar
  60. Lindsey NJ, Dawson RA, Henderson FI, Greaves M, Hughes P. (1993). Stimulation of von Willebrand Factor antigen release by immunoglobulin from thrombosis prone patients with systemic lupus erythematosus and the anti-phospholipid syndrome. Br J Rheumatol, 32: 123–126PubMedCrossRefGoogle Scholar
  61. Loizou S, Mackworth-Young CG, Cofiner C, Walport MJ. (1990). Heterogeneity of binding reactivity to different phospholipids of antibodies from patients with systemic lupus erythematosus ( SLE) and with syphilis. Clin Exp Immunol, 80: 171–6Google Scholar
  62. Mailhos C, Howard MK, Latchman DS. (1993). Heat shock protects neuronal cells from programmed cell death by apoptosis. Neurosciences. (In press).Google Scholar
  63. Manning-Krieg UC, Scherer PE, Schatz G. (1991). Sequential action of protein chaperones in protein import into the matrix. EMBO J, 10 (ll): 3273–3280PubMedPubMedCentralGoogle Scholar
  64. Masi AT, Rodnan GP, Medsger TA. (1981). Preliminary criteria for the classification of systemic sclerosis (scleroderma). Bull Rheum Dis, 31: 1–6Google Scholar
  65. Mezger V, Bensaude O, Morange M. (1989). Unusual levels of heat shock element-binding activity in embryonal carcinoma cells. Mol Cell Biol, 9: 3888–96PubMedPubMedCentralGoogle Scholar
  66. Minota S, Cameron B, Welch WJ, Winfield JB. (1988a). Autoantibodies to the constitutive 73 kD member of the hsp70 family of hsps in systemic lupus erythematosus. J Exp Med, 168: 1475–80PubMedCrossRefGoogle Scholar
  67. Minota S, Koyasu S, Yahara I, Winfield J. (1988b). Autoantibodies to the heat-shock protein hsp90 in systemic lupus erythematosus. J Clin Invest, 81 (l): 106–9PubMedCrossRefPubMedCentralGoogle Scholar
  68. Minota S, Winfield JB. (1987). IgG anti-lymphocyte antibodies in systemic lupus erythematosus react with surface molecules shared by peripheral T cells and a primitive T cell line. J Immuol, 138 (6): 1750–6Google Scholar
  69. Morrow J, Isenberg D. (1987). Systemic lupus erythematosus. In: Morrow WJW, Isenberg DA, eds. Autoimmune Rheumatic Diseases. Blackwell, Oxford. Pp 48–147.Google Scholar
  70. Morrow WJW, Isenberg DA, Todd-Pokropeck A, Parry HF, Snaith ML. (1982). Useful laboratory measures in the management of systemic lupus erythematosus. Quart J Med, 202: 125–38Google Scholar
  71. Morrow WJW, Williams DJP, Ferec C, et al. (1983). The use of C3d as a means of monitering clinical activity in systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis, 42: 668–71PubMedCrossRefPubMedCentralGoogle Scholar
  72. Muller S, Briand J-P, van Regenmortel MHV. (1988). Presence of antibodies to ubiquitin during the autoimmune response associated with systemic lupus erythematosus. Proc Natl Acad Sei USA, 85: 8176–80CrossRefGoogle Scholar
  73. Müller S, Barakat S, Watts R, Joubaud P, Isenberg DA. (1990). Longitudinal analysis of antibodies to histones, Sm-D peptides and ubiquitin in serum of patients with systemic lupus erythematosus, rheumatoid arthritis and tuberculosis. Clin Exp Rheumatol, 8: 445–53Google Scholar
  74. Niedzweski A, Konpachith AM, Fleming JE. (1991). Aging affects expression of 70 kD heat shock proteins in Drosophila. J Biol Chem, 266 (4): 9332–8Google Scholar
  75. Nimpf J, Bevers EM, Bomans PHH. (1986). Prothrombinase activity of human platelets is inhibited by beta-2 glycoprotein I. Biochim Biophys Acta, 884: 142–9PubMedCrossRefGoogle Scholar
  76. Norton PM, Isenberg DA, Latchman DS. (1989). Elevated levels of the glucocorticoid–associated 90 kDa heat shock protein in a proportion of SLE patients with active disease. J Autoimmunity, 2:187– 95Google Scholar
  77. O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK. (1989). Stimulation of a major subset of lymphocytes expressing T cell receptor gamma/delta by an antigen derived from mycobacterium tuberculosis. Cell, 57: 667–74PubMedCrossRefGoogle Scholar
  78. Pelham HR. (1988). Heat shock proteins: coming in from the cold. Nature, 332: 776–7PubMedCrossRefGoogle Scholar
  79. Phillips B, Abravaya K, Morimoto RL (1991). Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol, 65 (ll): 5680–92PubMedPubMedCentralGoogle Scholar
  80. Pierce SK, DeNagel DC, VanBuskirk AM. (1991). A role for heat shock proteins in antigen processing and presentation. Curr Top Microbiol Immunol, 167: 83–92Google Scholar
  81. Polla BS, Kantengwa S. (1991). Heat shock proteins and inflammation. Curr Top Microbiol Immunol, 167: 93–105PubMedGoogle Scholar
  82. Rajasekar R, Sim GK, Augustin A. (1990). Self heat shock and gamma/delta T cell reactivity. Proc Natl Acad Sei USA, 87: 1767–71CrossRefGoogle Scholar
  83. Ritossa F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experentia, 18: 571–3CrossRefGoogle Scholar
  84. Schlesinger MJ. (1990). Heat shock proteins. J Biol Chem, 265 (21): 12111–4PubMedGoogle Scholar
  85. Schousboe I. (1983). Effect of beta2-glycoprotein I on the activity of adenylate cyclase in platelet membranes. Thromb Res, 32: 291–9PubMedCrossRefGoogle Scholar
  86. Sharif M, Worrall JG, Singh B, et al. (1992). The development of monoclonal antibodies to the human mitochondrial 60-kd heat-shock protein, and their use in studying the expression of the protein in rheumatoid arthritis. Arthritis Rheum, 35: 1427–33PubMedCrossRefGoogle Scholar
  87. Sorger PK. (1991). Heat shock factor and the heat shock response. Cell, 65 (3): 363–6PubMedCrossRefGoogle Scholar
  88. Srivastava PK, Maki RG. (1991). Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol, 167: 109–23PubMedGoogle Scholar
  89. Strahler JR, Kuick R, Eckerskorn C, et al. (1990). Identification of two related markers for common acute lymphoblastic leukaemia as heat shock proteins. J CDn Invest, 85: 200–7CrossRefGoogle Scholar
  90. Symmons DPM, Coppock JS, Bacon PA, et al. (1988). Development and assessment of a computerized index of clinical disease activity in systemic lupus erythematosus. Quart J Med, 69 (258): 927–37PubMedGoogle Scholar
  91. Tai P–KK, Albers MW, Chang H, Faber LE,, Schreiber SL. (1992). Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science, 256: 1315–1318Google Scholar
  92. Tan EM, Cohen AS, Fries JF, et al. (1982a). The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum, 25 (ll): 1271–7PubMedCrossRefGoogle Scholar
  93. Temesvari P, Denburg J, Denbuerg S, Carbotte R, Bensen W, Singal D. (1983). Serum lymphocytotoxic antibodies in neuropsychiatric lupus: a serial study. Clin Immunol Immunopathol, 28: 243–51PubMedCrossRefGoogle Scholar
  94. Thompson SJ, Bedwell D, Hooper DC; et al. (1990). Pristane-induced arthritis: a possible role for the mycobacterial 65kD heat shock protein. In: Rice-Evans, ed. Stress Proteins in Inflammation. Richlieu, London.Google Scholar
  95. Tissieres A, Mitchell HK, Tracy UM. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol, 84: 389–98PubMedCrossRefGoogle Scholar
  96. Tsoulfa G, Rook GAW, van Embden JDA, et al. (1989a). Raised serum IgG and IgA antibodies to mycobacterial antigens in rheumatoid arthritis. Ann Rheum Dis, 48: 118–23PubMedCrossRefPubMedCentralGoogle Scholar
  97. Tsoulfa G, Rook GAW, Bahr GM, et al. (1989b). Elevated IgG antibody levels to the mycobacterial 65 kD heat shock protein are a characteristic of patients with rheumatoid arthritis. Scand J Immunol, 30: 519–29PubMedCrossRefGoogle Scholar
  98. Twomey B, McCallum S, Dhillon V, Isenberg D, Latchman D. (1992). Transcription of the genes encoding the small heat shock protein ubiquitin is unchanged in patients with systemic lupus erythematosus. Autoimmunity, 13: 197–200PubMedCrossRefGoogle Scholar
  99. Van den Broek MF, Hogervorst EJ, Van Bruggen MC, Van Eden W, van der Zee R, van den Berg WB. (1989). Protection against streptococcal cell wall-induced arthritis by pretreatment with the 65-kD mycobacterial heat shock protein. J Exp Med, 170: 449–66PubMedCrossRefGoogle Scholar
  100. Van Eden W, Thole JER, van der Zee R, et al. (1988). Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature, 331: 171–3PubMedCrossRefGoogle Scholar
  101. Van Eden W, Hogervorst EJ, Hensen EJ, van der Zee R, van Embden JD, Cohen IR. (1989). A cartilage-mimicking T-cell epitope on a 65K mycobacterial heat-shock protein: adjuvant arthritis as a model for human rheumatoid arthritis. Curr Top Microbiol Immunol, 145: 27–43PubMedGoogle Scholar
  102. Vanbuskirk A, Crump BL, Margoliash E, Pierce SK. (1989). A peptide binding protein having a role in antigen presentation is a member of the hsp70 heat shock family. J Exp Med, 170: 1799–809Google Scholar
  103. Vandenbark AA, Hashim G, Offner H. (1989). Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature, 341: 541–4PubMedCrossRefGoogle Scholar
  104. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. (1992). Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature, 356: 314–7PubMedCrossRefGoogle Scholar
  105. Welch WJ. (1987). The mammalian heat shock (or stress) response: a cellular defense mechanism. Adv Exp Med Biol, 225: 287–304PubMedCrossRefGoogle Scholar
  106. Whitelaw ML, Hutchison K, Perdew GH. (1991). A 50-kDa cytosolic protein complexed with the 90-kDa heat shock protein (hsp90) is the same protein complexed with pp60v-src hsp90 in cells transformed by the Rous sarcoma virus. J Biol Chem, 266 (25): 16436–40PubMedGoogle Scholar
  107. Winfield JB, Jarjour WN. (1991). Stress proteins, autoimmunity, and autoimmune disease. Curr Top Microbiol Immunol, 167: 161–89PubMedGoogle Scholar
  108. Worrall JG, Snaith ML, Batchelor JR, Isenberg DA. (1990). SLE: a rheumatological view Analysis of clinical features, serology and immunogenetics of 100 SLE patients during longterm followup. Quart J Med, 74 (275): 319–30PubMedGoogle Scholar
  109. Yang X-D, Gasser J, Feige U. (1990). Prevention of adjuvant arthritis in rats by a nonapeptide from the 65 kD mycobacterial heat shock protein. Clin Exp Immunol, 81: 189–94PubMedPubMedCentralGoogle Scholar
  110. Yost HJ, Petersen RB, Lindquist S. (1990). RNA metabolism: strategies for regulation in the heat shock response. Trends Genet, 6 (7): 223–7PubMedCrossRefGoogle Scholar
  111. Young D, and Mehlert A. (1990). Stress proteins and infectious diseases. In: Morimoto RI, Tissires A, Georgopoulos C, eds. Stress Proteins in Biology and Medicine. Cold Spring Harbour Laboratory Press, USA. Pp 131–65.Google Scholar
  112. Zerbini M, Musiani M, La Placa M. (1985). Effect of heat-shock on Epstein-Barr virus and cytomegalovirus expression. J Gen Virol, 66: 633–6PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Veena B. Dhillon
    • 1
    • 2
  • David S. Latchman
    • 1
  • David A. Isenberg
    • 2
  1. 1.Division of Molecular PathologyUniversity College and Middlesex School of MedicineLondonUK
  2. 2.Department of Rheumatology ResearchUniversity College and Middlesex School of MedicineLondonUK

Personalised recommendations