Skip to main content

The Expression of Heat Shock Proteins in Systemic Lupus Erythematosus

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 80))

Abstract

The heat shock response (HSR) was discovered in Drosophila buksii over 30 years ago [Ritossa 1962], and subsequently characterized by Tissières et al [1974] who showed that it consisted of the rapid synthesis of a small number of new proteins - the heat shock proteins (hsps) - against a background of repressed general protein synthesis, upon exposure of organisms to a variety of insults. These include hypoxia, glucose deprivation or supplementation, amino acid analogues, oxygen free radicals, cytokines, heavy metals, calcium ionophores, ethanol and many infectious pathogens [Linquist 1986]. The common denominator appears to be the accumulation of unfolded or malfolded proteins in the cell [Gething and Sambrook 1992]. The HSR has been observed in all cell systems, tissues and organisms studied. There is a high degree of homology of hsps phylogenetically. They thus appear to have an important role to play in cell survival. This is borne out by the fact that both the protein-coding and the regulatory sequences of some heat shock genes have been very highly conserved throughout evolution. However, while the HSR is ubiquitous, it is also finely tuned and versatile.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JL, Martin RG, Chang C, Mora PT, Livingston DM. (1977). Nuclear preparations of SV40 transformed cells contain tumor–specific transplantation antigen activity. Virology, 76: 420–5

    Article  PubMed  CAS  Google Scholar 

  • Angelidis E, Lazardis I, Pagoulatos GN. (1991). Constitutive expression of hsp70 in mammalian cells confers thermoresistance. J Biochem FEBS, 199: 35–9

    Article  CAS  Google Scholar 

  • Amett FC, Edworthy SM, Bloch DA. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum, 31: 315–24

    Article  Google Scholar 

  • Bansal GS, Norton PM, Latchman DS. (1991). The 90-kDa heat shock protein protects mammalian cells from thermal stress but not from viral infection. Exp Cell Res, 195 (2): 303–6

    Article  PubMed  CAS  Google Scholar 

  • Batchelor JR, Fielder AHL, Walport MJ. (1987). Family study of the major histocompatibility complex in HLA DR3 negative patients with systemic lupus erythematosus. Clin Exp Immunol, 70: 364–71

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blake MJ, Fargnoli J, Gershon D, Holbrook NJ. (1991). Concomitant decline irihyperthermia and hsp70 mRNA expression in aged rats. Am J Physiol, 260: 663–7

    Google Scholar 

  • Bohan A, Peter JB. (1975). Polymyositis and dermatomyositis. New Engl J Med, 292: 344–7

    Article  PubMed  CAS  Google Scholar 

  • Born W, Happ MP, Dallas A, et al. (1990a). Recognition of heat shock proteins and gamma delta cell function. Immunol Today, ll(2): 40–3

    Article  Google Scholar 

  • Born W, Hall L, Dallas A, et al. (1990b). Recognition of a peptide antigen by heat shock-reactive gamma/delta T lymphocytes. Science, 249: 67–9

    Article  PubMed  CAS  Google Scholar 

  • Bresnihan B, Oliver M, Williams B, Hughes GRV. (1979). An anti-neuronal antibody cross-reacting with erythrocytes and lymphocytes in systemic lupus erythematosus. Arthritis Rheum, 22 (4): 313–20

    Article  PubMed  CAS  Google Scholar 

  • Burdon RH. (1987). Thermotolerance and the heat shock proteins. Symp Soc Exp Biol, 41: 269–83

    PubMed  CAS  Google Scholar 

  • Campbell MJ, Gardner MJ. (1989). Calculating confidence intervals for some non-parametric analyses. In: Gardner MJ, Altman DG, eds. Statistics with Confidence. Br Med J, London. Pp 71–9.

    Google Scholar 

  • Chang CC, Konno S, Wu JM. (1991). Enhanced expression of heat shock protein and mRNA synthesis by type I interferon in human HL-60 leukemic cells. Biochem Int, 24 (2): 369–77

    PubMed  CAS  Google Scholar 

  • Ciavarra RP, Simeone A. (1990). T lymphocyte stress response. I. Induction of heat shock protein synthesis at febrile temperatures is correlated with enhanced resistance to hyperthermic stress but not to heavy metal toxicity or dexamethasone-induced immunosuppression. Cell Immunol, 129 (2): 363–76

    Article  PubMed  CAS  Google Scholar 

  • Cross AH, Dolich S, Raine CS. (1990). Antigen processing of myelin basic protein is required prior to recognition by T cells inducing EAE. Cell Immunol, 129: 22–31

    Article  PubMed  CAS  Google Scholar 

  • Deguchi Y. (1991). Enhanced expression of hsp gene in kidney lymphoid cells of lupus prone mice during growing process. Autoimmunity, 10: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Deguchi Y, Kishimoto S. (1990). Enhanced expression of hsp gene in peripheral mononuclear cells of patients with active SLE. Ann Rheum Dis, 49: 893–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deguchi Y, Negoro S, Kishimoto S. (1988). Age related changes of hsp gene transcription in human peripheral blood mononuclear cells. Biochem Biophys Res Comm, 157 (2): 580–4

    Article  PubMed  CAS  Google Scholar 

  • Deguchi Y, Negoro S, Kishimoto S. (1987). Heat shock protein synthesis by human peripheral mononuclear cells from SLE patients. Biochem Biophys Res Comm, 148 (3): 1063–8

    Article  PubMed  CAS  Google Scholar 

  • Dhillon VB, McCallum S, Norton P, et al. (1993a). Differential heat shock protein overexpression and its clinical relevance in systemic lupus erythematosus. Ann Rheum Dis, 52: 436–442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dhillon VB, McCallum S, Wilks D, Twomey B, Latchman D, Isenberg D. (1993b). The differential expression of heat shock proteins in rheumatic disease. Brit J Rheum (In press)

    Google Scholar 

  • Eglin RP, Lehner T, Subak-Sharpe JH. (1982). Detection of RNA complementary to HSV in mononuclear cells from patients with Behcet’s syndrome and recurrent oral ulceration. Lancet, ii: 1356–61

    Google Scholar 

  • Ehrenstein MR, Swana M, Keeling D, Asherson R, Hughes GRV, Isenberg DA. (1993). Anti-DNA antibodies in the primary anti-phospholipid syndrome ( PAPS ). Br J Rheumatol, 32: 362–5

    Google Scholar 

  • Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR. (1990). Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65kDa heat shock protein. Proc Natl Acad Sei USA, 87: 1576–80

    Article  CAS  Google Scholar 

  • Erkeller–Yüksel F, Isenberg DA, Dhillon VB, Latchman DS, Lydyard PM. (1992). Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J Autoimmunity, 5: 803–14

    Google Scholar 

  • Faassen AE, O’Leary JJ, Rodysill KJ, Bergh N, Hallgren HM. (1989). Diminished heat-shock protein synthesis following mitogen stimulation of lymphocytes from aged donors. Exp Cell Res, 183 (2): 326–34

    Article  PubMed  CAS  Google Scholar 

  • Faulds GB, Isenberg DA, Latchman DS. (1993). The tissue-specific elevation in synthesis of the 90kD heat shock protein preceeds the onset of disease in lupus–prone MRL/lpr mice. J Rheumatol. (In press).

    Google Scholar 

  • Ferrarini M, Heltai S, Zocchi MF, Rugarli C. (1992). Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer, 51: 613–19

    Article  PubMed  CAS  Google Scholar 

  • Fisch P, Malkovsky M, Kovats S, et al. (1990). Recognition by human Vgamma9/Vdelta2 T cells of a GroEL homologue on Daudi Burkitt’s lymphoma cells. Science, 250 (250): 1269–73

    Article  PubMed  CAS  Google Scholar 

  • Flynn GC, Chappell TG, Rothman JE. (1989). Peptide binding and release by proteins implicated as catalysts of protein assembly. Science, 245: 385–8

    Article  PubMed  CAS  Google Scholar 

  • Friedman SM, Posnett DN, Tumang JR, Cole BC, Crow MK. (1991). A potential role for microbial superantigens in the pathogenesis of systemic autoimmune disease. Arthritis Rheum, 34 (4): 468–80

    Article  PubMed  CAS  Google Scholar 

  • Gaston JS. (1991). Heat shock proteins and autoimmunity. Semin Immunol, 3 (l): 35–42

    PubMed  CAS  Google Scholar 

  • Geelen JLMC, Minnaar RP, Boom R, van der Noordaa J, Goudsmit J. (1988). Heat shock induction of the human immunodeficiency virus long terminal repeat. J Gen Virol, 69: 2913–7

    Article  PubMed  CAS  Google Scholar 

  • Gething M-J, Sambrook J. (1992). Protein folding in the cell. Nature, 355: 33–45

    Article  PubMed  CAS  Google Scholar 

  • Gladman DD, Goldsmith CH, Urowitz MB. (1992c). Cross-cultural validation and reliability of three disease activity indices in SLE. J Rheumatol, 19: 608–11

    PubMed  CAS  Google Scholar 

  • Gruppi CM, Zakeri ZF, Wolgemuth DJ. (1991). Stage and lineage-regulated expression of two hsp90 transcripts during mouse germ cell differentiation and embryogenesis. Mol Reprod Dev, 28 (3): 209–17

    Article  PubMed  CAS  Google Scholar 

  • Günther E. (1991). Heat shock protein genes and the major histocompatibility complex. Curr Top Microbiol Immunol, 167: 57–68

    PubMed  Google Scholar 

  • Hansen LK, Houchins JP, O’Leary JJ (1991). Differential regulation of HSC70 HSP70 HSP90 alpha and HSP90 beta mRNA expression by mitogen activation and heat shock in human lymphocytes. Exp Cell Res, 192 (2): 587–96

    Article  PubMed  CAS  Google Scholar 

  • Heufelder AE, Wenzel BE, Gorman CA, Bahn RS. (1991). Detection cellular localization and modulation of heat shock proteins in cultured fibroblasts from patients with extrathyroidal manifestations of Graves’ disease. J Clin Endocrinol Metabol, 73 (4): 739–45

    Article  CAS  Google Scholar 

  • Hoffman P, Houston L, Butler CA. (1990). Legionella pneumophilia htpAB heat shock operon: nucleotide sequence and expression of the 60 kDa antigen in L. pneumophilia-infected HeLa cells. Infect Immun, 58 (10): 3380–7

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holoshitz J, Koning F, Coligan JE, De Bruyn J, Strober S. (1989). Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature, 339: 226–9

    Article  PubMed  CAS  Google Scholar 

  • Isenberg DA, Rowe A, Tookman A. (1984). An immunohistological study of secondary Sjögren’s syndrome. Ann Rheum Dis, 43: 470–476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Janeway C. (1991). Mis: makes a little sense. Nature, 349: 459–61

    Google Scholar 

  • Janeway CA Jnr, Jones B, Hayday A. (1988). Specificity and function of T cells bearing gamma/delta receptors. Immunol Today, 9: 73–6

    Article  Google Scholar 

  • Jardetzky TS, Lane WS, Robinson RA, Madden DR, Wiley DC. (1991). Identification of self peptides bound to purified HLA–B27. Nature, 353: 326–9

    Article  PubMed  CAS  Google Scholar 

  • Jarjour WN, Jeffries BD, Davis JS 4th, Welch WJ, Mimura T, Winfield JB. (1991). Autoantibodies to human stress proteins. A survey of various rheumatic and other inflammatory diseases. Arthritis Rheum, 34 (9): 1133–8

    Article  PubMed  CAS  Google Scholar 

  • Jenkins DE, Schultz JE, Matin A. (1988). Starvation-induced cross protection against heat or hydrogen peroxide challenge in Escherichia coli. J Bacterid, 170: 3910–4

    CAS  Google Scholar 

  • Karlsson–Parra A, Söderström K, Ferm M, Ivanyi J, Kiessling R, Klareskog L. (1990). Presence of human 65kD heat shock protein (hsp) in inflamed joints and subcutaneous nodules of RA patients. Scand J Immunol, 31: 283–8

    Article  Google Scholar 

  • Kaufmann SH, Schoel B, Wand Wurttenberger A, Steinhoff U, Münk ME, Koga T. (1990). T–cells, stress proteins, and pathogenesis of mycobacterial infections. Curr Top Microbiol Immunol, 155:125– 41

    Google Scholar 

  • Keat A, Thomas B, Hughes R, Taylor Robinson D. (1989). Chlamydia trachomatis in reactive arthritis. Rheumatol Int, 9: 197–200

    Google Scholar 

  • Koga T, Wand-Württenberger A, Debruyn J, Münk M, Schoel B, Kaufmann SHE. (1989). T cells against a bacterial heat shock protein recognize stressed macrophages. Science, 245: 1112–5

    Article  PubMed  CAS  Google Scholar 

  • Kohda T, Kondo K, Oishi M. (1991). Cellular HSP90 (HSP86) mRNA level and in vitro differentiation of mouse embryonal carcinoma (F9) cells. FEBS Lett, 290 (1–2): 107–10

    Article  PubMed  CAS  Google Scholar 

  • Koyasu S, Nishida E, Kadowaki T, et al. (1986). Two mammalian heat shock proteins HSP90 and HSP100 are actin-binding proteins. Proc Nat Acad Sei USA, 83 (21): 8054–8

    Article  CAS  Google Scholar 

  • Kubo T, Towle CA, Mankin HJ, Treadwell BV. (1985). Stress induced proteins in chondrocytes from patients with osteoarthritis. Arthritis Rheum, 28 (10): 1140–5

    Article  PubMed  CAS  Google Scholar 

  • LaThangue NB, Latchman DS. (1988). A cellular protein related to heat-shock protein 90 accumulates during herpes simplex virus infection and is overexpressed in transformed cells. Exp Cell Res, 178 (l): 169–79

    Google Scholar 

  • Lehner T, Barnes CG. (1979). Criteria for the diagnosis and classification of Behcet’s syndrome. In: Lehner T, Barnes CG, eds. Behcet’s Syndrome: Clinical and Immunological Features. Academic Press, London.

    Google Scholar 

  • Lehner T, Lavery E, Smith R, van der Zee R, Mizushima Y, Shinnock T. (1991). Association of the 65– kD heat shock protein of Streptococcus sanguis and the corresponding antibodies in Behcet’s syndrome. Infect Immunol, 59: 1434–1441.

    CAS  Google Scholar 

  • Life PF, Bassey EOE, Gaston JSH. (1991). T cell recognition of bacterial hsps in inflammatory arthritis. Immunol Rev, 121: 113–135

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S. (1986). The heat shock response. Ann Rev Biochem, 55: 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindsey NJ, Dawson RA, Henderson FI, Greaves M, Hughes P. (1993). Stimulation of von Willebrand Factor antigen release by immunoglobulin from thrombosis prone patients with systemic lupus erythematosus and the anti-phospholipid syndrome. Br J Rheumatol, 32: 123–126

    Article  PubMed  CAS  Google Scholar 

  • Loizou S, Mackworth-Young CG, Cofiner C, Walport MJ. (1990). Heterogeneity of binding reactivity to different phospholipids of antibodies from patients with systemic lupus erythematosus ( SLE) and with syphilis. Clin Exp Immunol, 80: 171–6

    Google Scholar 

  • Mailhos C, Howard MK, Latchman DS. (1993). Heat shock protects neuronal cells from programmed cell death by apoptosis. Neurosciences. (In press).

    Google Scholar 

  • Manning-Krieg UC, Scherer PE, Schatz G. (1991). Sequential action of protein chaperones in protein import into the matrix. EMBO J, 10 (ll): 3273–3280

    PubMed  CAS  PubMed Central  Google Scholar 

  • Masi AT, Rodnan GP, Medsger TA. (1981). Preliminary criteria for the classification of systemic sclerosis (scleroderma). Bull Rheum Dis, 31: 1–6

    Google Scholar 

  • Mezger V, Bensaude O, Morange M. (1989). Unusual levels of heat shock element-binding activity in embryonal carcinoma cells. Mol Cell Biol, 9: 3888–96

    PubMed  CAS  PubMed Central  Google Scholar 

  • Minota S, Cameron B, Welch WJ, Winfield JB. (1988a). Autoantibodies to the constitutive 73 kD member of the hsp70 family of hsps in systemic lupus erythematosus. J Exp Med, 168: 1475–80

    Article  PubMed  CAS  Google Scholar 

  • Minota S, Koyasu S, Yahara I, Winfield J. (1988b). Autoantibodies to the heat-shock protein hsp90 in systemic lupus erythematosus. J Clin Invest, 81 (l): 106–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Minota S, Winfield JB. (1987). IgG anti-lymphocyte antibodies in systemic lupus erythematosus react with surface molecules shared by peripheral T cells and a primitive T cell line. J Immuol, 138 (6): 1750–6

    CAS  Google Scholar 

  • Morrow J, Isenberg D. (1987). Systemic lupus erythematosus. In: Morrow WJW, Isenberg DA, eds. Autoimmune Rheumatic Diseases. Blackwell, Oxford. Pp 48–147.

    Google Scholar 

  • Morrow WJW, Isenberg DA, Todd-Pokropeck A, Parry HF, Snaith ML. (1982). Useful laboratory measures in the management of systemic lupus erythematosus. Quart J Med, 202: 125–38

    Google Scholar 

  • Morrow WJW, Williams DJP, Ferec C, et al. (1983). The use of C3d as a means of monitering clinical activity in systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis, 42: 668–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muller S, Briand J-P, van Regenmortel MHV. (1988). Presence of antibodies to ubiquitin during the autoimmune response associated with systemic lupus erythematosus. Proc Natl Acad Sei USA, 85: 8176–80

    Article  CAS  Google Scholar 

  • Müller S, Barakat S, Watts R, Joubaud P, Isenberg DA. (1990). Longitudinal analysis of antibodies to histones, Sm-D peptides and ubiquitin in serum of patients with systemic lupus erythematosus, rheumatoid arthritis and tuberculosis. Clin Exp Rheumatol, 8: 445–53

    Google Scholar 

  • Niedzweski A, Konpachith AM, Fleming JE. (1991). Aging affects expression of 70 kD heat shock proteins in Drosophila. J Biol Chem, 266 (4): 9332–8

    Google Scholar 

  • Nimpf J, Bevers EM, Bomans PHH. (1986). Prothrombinase activity of human platelets is inhibited by beta-2 glycoprotein I. Biochim Biophys Acta, 884: 142–9

    Article  PubMed  CAS  Google Scholar 

  • Norton PM, Isenberg DA, Latchman DS. (1989). Elevated levels of the glucocorticoid–associated 90 kDa heat shock protein in a proportion of SLE patients with active disease. J Autoimmunity, 2:187– 95

    Google Scholar 

  • O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK. (1989). Stimulation of a major subset of lymphocytes expressing T cell receptor gamma/delta by an antigen derived from mycobacterium tuberculosis. Cell, 57: 667–74

    Article  PubMed  Google Scholar 

  • Pelham HR. (1988). Heat shock proteins: coming in from the cold. Nature, 332: 776–7

    Article  PubMed  CAS  Google Scholar 

  • Phillips B, Abravaya K, Morimoto RL (1991). Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol, 65 (ll): 5680–92

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pierce SK, DeNagel DC, VanBuskirk AM. (1991). A role for heat shock proteins in antigen processing and presentation. Curr Top Microbiol Immunol, 167: 83–92

    Google Scholar 

  • Polla BS, Kantengwa S. (1991). Heat shock proteins and inflammation. Curr Top Microbiol Immunol, 167: 93–105

    PubMed  CAS  Google Scholar 

  • Rajasekar R, Sim GK, Augustin A. (1990). Self heat shock and gamma/delta T cell reactivity. Proc Natl Acad Sei USA, 87: 1767–71

    Article  CAS  Google Scholar 

  • Ritossa F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experentia, 18: 571–3

    Article  CAS  Google Scholar 

  • Schlesinger MJ. (1990). Heat shock proteins. J Biol Chem, 265 (21): 12111–4

    PubMed  CAS  Google Scholar 

  • Schousboe I. (1983). Effect of beta2-glycoprotein I on the activity of adenylate cyclase in platelet membranes. Thromb Res, 32: 291–9

    Article  PubMed  CAS  Google Scholar 

  • Sharif M, Worrall JG, Singh B, et al. (1992). The development of monoclonal antibodies to the human mitochondrial 60-kd heat-shock protein, and their use in studying the expression of the protein in rheumatoid arthritis. Arthritis Rheum, 35: 1427–33

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK. (1991). Heat shock factor and the heat shock response. Cell, 65 (3): 363–6

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, Maki RG. (1991). Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol, 167: 109–23

    PubMed  CAS  Google Scholar 

  • Strahler JR, Kuick R, Eckerskorn C, et al. (1990). Identification of two related markers for common acute lymphoblastic leukaemia as heat shock proteins. J CDn Invest, 85: 200–7

    Article  CAS  Google Scholar 

  • Symmons DPM, Coppock JS, Bacon PA, et al. (1988). Development and assessment of a computerized index of clinical disease activity in systemic lupus erythematosus. Quart J Med, 69 (258): 927–37

    PubMed  CAS  Google Scholar 

  • Tai P–KK, Albers MW, Chang H, Faber LE,, Schreiber SL. (1992). Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science, 256: 1315–1318

    CAS  Google Scholar 

  • Tan EM, Cohen AS, Fries JF, et al. (1982a). The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum, 25 (ll): 1271–7

    Article  PubMed  CAS  Google Scholar 

  • Temesvari P, Denburg J, Denbuerg S, Carbotte R, Bensen W, Singal D. (1983). Serum lymphocytotoxic antibodies in neuropsychiatric lupus: a serial study. Clin Immunol Immunopathol, 28: 243–51

    Article  PubMed  CAS  Google Scholar 

  • Thompson SJ, Bedwell D, Hooper DC; et al. (1990). Pristane-induced arthritis: a possible role for the mycobacterial 65kD heat shock protein. In: Rice-Evans, ed. Stress Proteins in Inflammation. Richlieu, London.

    Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol, 84: 389–98

    Article  PubMed  CAS  Google Scholar 

  • Tsoulfa G, Rook GAW, van Embden JDA, et al. (1989a). Raised serum IgG and IgA antibodies to mycobacterial antigens in rheumatoid arthritis. Ann Rheum Dis, 48: 118–23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsoulfa G, Rook GAW, Bahr GM, et al. (1989b). Elevated IgG antibody levels to the mycobacterial 65 kD heat shock protein are a characteristic of patients with rheumatoid arthritis. Scand J Immunol, 30: 519–29

    Article  PubMed  CAS  Google Scholar 

  • Twomey B, McCallum S, Dhillon V, Isenberg D, Latchman D. (1992). Transcription of the genes encoding the small heat shock protein ubiquitin is unchanged in patients with systemic lupus erythematosus. Autoimmunity, 13: 197–200

    Article  PubMed  CAS  Google Scholar 

  • Van den Broek MF, Hogervorst EJ, Van Bruggen MC, Van Eden W, van der Zee R, van den Berg WB. (1989). Protection against streptococcal cell wall-induced arthritis by pretreatment with the 65-kD mycobacterial heat shock protein. J Exp Med, 170: 449–66

    Article  PubMed  Google Scholar 

  • Van Eden W, Thole JER, van der Zee R, et al. (1988). Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature, 331: 171–3

    Article  PubMed  Google Scholar 

  • Van Eden W, Hogervorst EJ, Hensen EJ, van der Zee R, van Embden JD, Cohen IR. (1989). A cartilage-mimicking T-cell epitope on a 65K mycobacterial heat-shock protein: adjuvant arthritis as a model for human rheumatoid arthritis. Curr Top Microbiol Immunol, 145: 27–43

    PubMed  Google Scholar 

  • Vanbuskirk A, Crump BL, Margoliash E, Pierce SK. (1989). A peptide binding protein having a role in antigen presentation is a member of the hsp70 heat shock family. J Exp Med, 170: 1799–809

    Google Scholar 

  • Vandenbark AA, Hashim G, Offner H. (1989). Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature, 341: 541–4

    Article  PubMed  CAS  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. (1992). Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature, 356: 314–7

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ. (1987). The mammalian heat shock (or stress) response: a cellular defense mechanism. Adv Exp Med Biol, 225: 287–304

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw ML, Hutchison K, Perdew GH. (1991). A 50-kDa cytosolic protein complexed with the 90-kDa heat shock protein (hsp90) is the same protein complexed with pp60v-src hsp90 in cells transformed by the Rous sarcoma virus. J Biol Chem, 266 (25): 16436–40

    PubMed  CAS  Google Scholar 

  • Winfield JB, Jarjour WN. (1991). Stress proteins, autoimmunity, and autoimmune disease. Curr Top Microbiol Immunol, 167: 161–89

    PubMed  CAS  Google Scholar 

  • Worrall JG, Snaith ML, Batchelor JR, Isenberg DA. (1990). SLE: a rheumatological view Analysis of clinical features, serology and immunogenetics of 100 SLE patients during longterm followup. Quart J Med, 74 (275): 319–30

    PubMed  CAS  Google Scholar 

  • Yang X-D, Gasser J, Feige U. (1990). Prevention of adjuvant arthritis in rats by a nonapeptide from the 65 kD mycobacterial heat shock protein. Clin Exp Immunol, 81: 189–94

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yost HJ, Petersen RB, Lindquist S. (1990). RNA metabolism: strategies for regulation in the heat shock response. Trends Genet, 6 (7): 223–7

    Article  PubMed  CAS  Google Scholar 

  • Young D, and Mehlert A. (1990). Stress proteins and infectious diseases. In: Morimoto RI, Tissires A, Georgopoulos C, eds. Stress Proteins in Biology and Medicine. Cold Spring Harbour Laboratory Press, USA. Pp 131–65.

    Google Scholar 

  • Zerbini M, Musiani M, La Placa M. (1985). Effect of heat-shock on Epstein-Barr virus and cytomegalovirus expression. J Gen Virol, 66: 633–6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dhillon, V.B., Latchman, D.S., Isenberg, D.A. (1994). The Expression of Heat Shock Proteins in Systemic Lupus Erythematosus. In: Zouali, M. (eds) Autoimmunity: Experimental Aspects. NATO ASI Series, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78779-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78779-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78781-2

  • Online ISBN: 978-3-642-78779-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics