Advertisement

Pathobiochemische und pharmakologische Aspekte der Abhängigkeit

  • H. Rommelspacher
  • L. G. Schmidt

Zusammenfassung

Abhängigkeit wird in psychische und physische Abhängigkeit unterschieden. Der Schwerpunkt des folgenden Beitrags soll auf der Darstellung der physischen Abhängigkeit, die sich im Entzugssyndrom manifestiert, liegen. Andererseits gibt es gerade in den letzten Jahren zunehmend Untersuchungen zur Pathogenese und Pathobiochemie der psychischen Abhängigkeit. Diese verdienen eine kurze Darstellung, da die Befunde zu ersten therapeutischen Ansätzen geführt haben. Auf die neurobiologischen Mechanismen der psychischen Abhängigkeit soll nur insofern eingegangen werden, als sie zum Verständnis möglicher Behandlungsstrategien beitragen können. Medikamente zur Behandlung der psychischen Abhängigkeit, d.h. im engeren Sinn Medikamente mit der Indikation Rückfallprophylaxe, werden i. allg. als Anticraving-Substanzen bezeichnet. Das Zielsymptom ist das Alkohol- bzw. Drogenverlangen („craving“). Dieses wird als wichtigstes neurobiologisch gut untersuchbares Symptom der Abhängigkeit angesehen. Für andere Symptome, wie Beispielsweise den Kontrollverlust, haben Lernvorgänge eine so überragende Bedeutung, daß die Pathogenese als noch wesentlich komplexer angesehen wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ackenheil M, Athen D, Beckmann H (1978) Pathophysiology of delirious states. J Neural Transm (Suppl) 14: 167–175Google Scholar
  2. Allan AM, Harris RA (1987) Acute and chronic ethanol treatments alter GAB A receptor operated chloride channels. Pharmacol Biochem Behav 27: 655–670CrossRefGoogle Scholar
  3. Altamura AC, Cavallaro R, Regazetti MG, Porta M (1989) Nimodipine in human alco­hol withdrawal syndrome. ENCP Abstr 97Google Scholar
  4. Athen D, Beckmann H, Ackenheil M, Markianos M (1977) Biochemical investigation into the alcoholic delirium: alterations of the biogenic amines. Arch Psychiat Nervenkrankh 224: 129–140Google Scholar
  5. Ballenger JC, Post RM (1978) Kindling as a model for alcohol withdrawal syndromes. Br J Psychiat 133: 1–14CrossRefGoogle Scholar
  6. Becker HC, Hale RL (1993) Repeated episodes of ethanol withdrawal potentiate the severity of subsequent withdrawal seizures: an animal model of alcohol withdrawal “kindling”. Alcohol Clin Exp Res 17: 94–98PubMedCrossRefGoogle Scholar
  7. Beckmann J (1990) Alkoholentzugsdelir und Hypokaliämie. Nervenarzt 61: 444–446PubMedGoogle Scholar
  8. Bone GHA, Majchrowicz E, Martin PR, Linnoila M, Nutt DJ (1989) A comparison of calcium antagonists and diazepam in reducing ethanol withdrawal tremors. Psychopharmacology 99: 386–388PubMedCrossRefGoogle Scholar
  9. Borg S, Kvande H, Sedvall G (1981) Central norepinephrine metabolism during alcohol intoxication in addicts and healthy volunteers. Science 213: 1135–1137PubMedCrossRefGoogle Scholar
  10. Borg S, Kvande H, Liljeberg P, Mossberg D, Valverius P (1985) 5-Hydroxyindoleace- tic acid in cerebrospinal fluid in alcoholic patients under different clinical conditions. Alcohol 2 (3):415–418PubMedCrossRefGoogle Scholar
  11. Brennan CH, Crabbe J, Littleton JM (1990) Genetic regulation of dihydrophyridine — sensitive calcium channels in brain may determine susceptibility to physical dependence on alcohol. Neuropharmacology 29: 429–432PubMedCrossRefGoogle Scholar
  12. Coffman JA, Petty F (1985) Plasma GABA levels in chronic alcoholics. Am J Psychiat 142: 1204–1205PubMedGoogle Scholar
  13. Daunderer M (1988) Akute Alkoholintoxikation: Physostigmin als Antidot gegen Äthanol. Fortschr Med 25: 1311–1312 (Nachdruck)Google Scholar
  14. Deckert J, Müller T, Becker T, Lanczik M, Fritze J (1990) Nimodipin in der Behandlung des Alkoholentzugssyndroms: Erfahrungen aus einer offenen Studie. Fortschr Neurol Psychiat 58 (Suppl): 36–37Google Scholar
  15. DeFeudis FW (1974) Central cholinergic system and behaviour. Academic Press, New York LondonGoogle Scholar
  16. Dolin S, Little H, Hudspith M, Pagonis C, Littleton J (1987) Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26: 275–279PubMedCrossRefGoogle Scholar
  17. Engel J, Liljequist S (1976) The effect of long-term ethanol treatment on the sensitivity of dopamine receptors in the nucleus accumbens. Psychopharmacology 49: 253–257PubMedCrossRefGoogle Scholar
  18. Farde L, Wiesel FA, Stone-Elander S, Halldin C, Norström AL, Hall H, Sedvall G (1990) D2 Dopamine receptors in neuroleptic-naive schizophrenic patients. Arch Gen Psychiat 47: 213–219PubMedGoogle Scholar
  19. Freund G, Ballinger WE (1988 a) Decrease of benzodiazepine receptors in frontal cor­tex of alcoholics. Alcohol 5:275–282PubMedCrossRefGoogle Scholar
  20. Freund G, Ballinger WE (1988 b) Loss of cholinergic muscarinic receptors in frontal cortex of alcohol abusers. Alcohol Clin Exp Res 12:630–638PubMedCrossRefGoogle Scholar
  21. Garthwaite G, Garthwaite J (1986) Amino acid toxicity: intracellular sites of calcium accumulation associated with the onset of irreversible damage to rat cerebellar neurones in vitro. Neurosci Lett 71: 53–58PubMedCrossRefGoogle Scholar
  22. Gastpar M, Rösinger C, Bender S (1993) A German multi-center study with tiapride in the long-term management of alcoholics. Pharmacopsychiatry 26: 154Google Scholar
  23. Gessa GL . Muntoni F, Collu M, Vargiu, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201–203PubMedCrossRefGoogle Scholar
  24. Gillman MA, Lichtigfeld FJ (1991) Placebo and analgesic nitrous oxide for treatment of the alcohol withdrawal state. Br J Psychiat 159: 672–675CrossRefGoogle Scholar
  25. Glue P, Nutt D (1990) Overexcitement and disinhibition — dynamic neurotransmitter interactions in alcohol withdrawal. Br J Psychiat 157: 491–499CrossRefGoogle Scholar
  26. Goldman GD, Vollicer L, Gold BF (1981) Cerebrospinal fluid GABA and other cyclic nucleotides in alcoholics with and without seizures. Alcohol Clin Exp Res 5: 431–434PubMedCrossRefGoogle Scholar
  27. Grant KA, Valverius P, Hudspith M, Tabakoff B (1990) Ethanol withdrawal seizures and the NMDA receptor complex. Eur J Pharmacol 176:289–296PubMedCrossRefGoogle Scholar
  28. Guan XM, McBride WJ (1989) Serotonin microinfusion into the ventral tegmental area increases accumbens dopamine release. Brain Res Bull 23: 541–547PubMedCrossRefGoogle Scholar
  29. Hashimoto T, Ueha T, Mizutani H, Juriyama K (1990) Alcohol-induced alterations in the function of cerebral GABAA-receptor complex. Clin Neuropharmacol 13 (Suppl 2): 506–507Google Scholar
  30. Hawley RJ, Major LF, Schulman E, Trocha PJ, Tagenaga JK, Catravas GN (1981) Cerebrospinal fluid cyclic nucleotides and GABA do not change in alcohol withdrawal. Life Sci 28: 295–299PubMedCrossRefGoogle Scholar
  31. Herz A, Shippenberg TS (1989) Neurochemical aspects of addiction: opioids and other drugs of abuse. In: Goldstein A (ed) Molecular and cellular aspects of the drug addiction. Springer, Berlin Heidelberg New York, pp 111–141CrossRefGoogle Scholar
  32. Kalant H (1975) Direct effects of ethanol on the nervous system. Fed Proc 34: 1930–1941PubMedGoogle Scholar
  33. Kril JJ, Dodd PR, Gundlach AL, Davies N, Watson WE, Johnston GA, Harper CG (1988) Necropsy study of GABA/benzodiazepine receptor binding sites in brain tissue from chronic alcoholic patients. Clin Exp Neurol 25: 135–141PubMedGoogle Scholar
  34. Kugler J, Rode CP (1984) Änderungen der EEG-Tätigkeit nach Nimodipin-Gabe. In: Symp Fortschritte und Pathophysiologie. Diagnose und Therapie zerebrovaskulärer Erkrankungen. Excerpta Medica, Amsterdam, S 65–79Google Scholar
  35. Kulonen D (1983) Ethanol und GABA. Med Biol 61: 147–167PubMedGoogle Scholar
  36. Liljequist S, Tabakoff B (1985) Binding characteristics of [3H]flunitrazepam and CL-218,872 in cerebellum and cortex of C57B1 mice made tolerant to and dependent on phenobarbital or ethanol. Alcohol 2: 215–220PubMedCrossRefGoogle Scholar
  37. Lima-Landmann MTR, Albuquerque EX (1989) Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells. FEBS Lett 247: 61–67CrossRefGoogle Scholar
  38. Linnoila M (1987) Alcohol withdrawal and noradrenergic function. Ann Int Med 107: 875–889PubMedGoogle Scholar
  39. Little H, Dolin SJ, Halsey MJ (1986) Calcium channel antagonists decrease the ethanol withdrawal syndrome in rats. Life Sci 39: 2059–2065PubMedCrossRefGoogle Scholar
  40. Mäki T, Heikkonen E, Kontula K, Härkönen T, Härkönen M, Ylikahri (1989) Effect of prolonged ethanol intake and abrupt withdrawal on human lymphocytic beta-adrenergic receptors. Alc Alcohol 24: 381Google Scholar
  41. Matussek N, Ackenheil M, Herz A (1984) The dependence of the Clonidine growth hormone test on alcohol drinking habits and the menstrual cycle. Psychoneuroendocrinology 9: 173–177PubMedCrossRefGoogle Scholar
  42. Mauder AJ, Young A, Merrik MV, Morton JJ (1989) Fluid balance, vasopressin and withdrawal symptoms during detoxification from alcohol. Drug Ale Dep 24: 233–237CrossRefGoogle Scholar
  43. McCowan TJ, Breese GR (1990) Multiple withdrawals from chronic ethanol “kindles” inferior collicular seizure activity: evidence for kindling of seizures associated with alcoholism. Alcohol Clin Exp Res 14: 394–399CrossRefGoogle Scholar
  44. Metha T, Ticku MK (1988) Ethanol potentiation of GABAergic transmission in cultured spinal cord neurons involves aminobutyric acidA-gated chloride channels. J Pharmacol Exp Ther 246: 558–564Google Scholar
  45. Michaelis EK, Mulvaney MJ, Freed WJ (1978) Effects of acute and chronic ethanol intake of synaptosomal binding activity. Biochem Pharmacol 27: 1685–1691PubMedCrossRefGoogle Scholar
  46. Morinan A (1987) Reduction in striatal 5-hydroxytryptamine turnover followingGoogle Scholar
  47. chronic administration of ethanol to rats. Ale Alcohol 22:53–60Google Scholar
  48. Morrow AL, Montpied P, Paul SM (1991) GABAA receptor function and expression following chronic ethanol and barbiturate administration. Ann NY Acad Sci 625: 496–507PubMedCrossRefGoogle Scholar
  49. Nistri A, Bartolini A, Deffenu B, Pepeu G (1972) Investigations into the release of acetylcholine from the cerebral cortex of the cat: Effects of amphetamine, scopolamine and septal lesions. Neuropharmacology 11: 665–674Google Scholar
  50. Nowak L, Bregestovski P, Ascher (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature (London) 307: 462–465Google Scholar
  51. Oliverio A, Castellano E, Puglisi-Allegra S (1984) Psychobiology of opioids. Int Rev Neurobiol 25: 277–337PubMedCrossRefGoogle Scholar
  52. O’Mälley SS, Jaffe AJ, Chang G, Schottenfeld RS, Meyer RE, Rounsaville B (1992) Naltrexone and coping skills therapy for alcohol dependence. Arch Gen Psychiat 49: 881–887PubMedGoogle Scholar
  53. Pandey SC, Piano MR, Schwerte DW, Davis JM, Pandey GN (1992) Effect of ethanol administration and withdrawal on serotonin receptor subtypes and receptor-mediated phosphoinositide hydrolysis in rat brain. Alcohol Clin Exp Res 16: 1110–1116PubMedCrossRefGoogle Scholar
  54. Petty F, Sherman AD (1984) Plasma GAB A levels in psychiatric illness. J Affective Disord 6: 131–138CrossRefGoogle Scholar
  55. Poser W (1993) Pharmacotherapy of substance use disorders. Pharmacopsychiatry 26: 187Google Scholar
  56. Rabin RA, Wolfe BB, Dibner MD, Zahniser MR, Melchior C, Molinoff PB (1980) Effects of ethanol administration and withdrawal on neurotransmitter receptor system in C57 mice. J Pharmacol Exp Ther 213: 491–496PubMedGoogle Scholar
  57. Rassnick S, Heinrichs SC, Britton KT, Koob GF (1993) Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res 605: 25–32PubMedCrossRefGoogle Scholar
  58. Rawat AK (1974) Brain levels and turnover rates of presumptive neurotransmitters as influenced by administration and withdrawal of ethanol in mice. J Neurochem 22: 915–922PubMedCrossRefGoogle Scholar
  59. Rommelspacher H (1990) Aminosäuren als aktivierende Neurotransmitter. Nervenarzt 61: 61–63PubMedGoogle Scholar
  60. Rommelspacher H, Raeder C, Brüning G, Kaulen P (1992) Adaptive changes of dopamine-D2 receptors in rat brain following ethanol withdrawal: a quantitative autoradiographic investigation. Alcohol 9: 355–362PubMedCrossRefGoogle Scholar
  61. Rommelspacher H, Nanz C, Borbe HO, Fehske KJ, Müller WE, Wollert U (1981) Benzodiazepine antagonism by harman and other ß-carbolines in vitro and in vivo. Eur J Pharmacol 70: 409–416PubMedCrossRefGoogle Scholar
  62. Roy A, DeJong J, Ferraro I, Adinoff B, Rauritz B, Linnoila H (1990) CSF gammaaminobutyric acid in alcoholics and control subjects. Am J Psychiat 147: 1294–1296PubMedGoogle Scholar
  63. San I, Pomarol G, Peri JM, Olle JM, Cami J (1991) Follow-up after a six-month maintenance period on naltrexone versus placebo in heroin addicts. Br J Addict 86: 983–990PubMedCrossRefGoogle Scholar
  64. Sass H (1993) Calciumacethylhomotaurinate: results of multicenterstudies. Pharmacopsychiatry 26: 194Google Scholar
  65. Schmidt LG, Rommelspacher H (1990) Biologische Marker des Alkoholismus. Nervenarzt 61: 140–147PubMedGoogle Scholar
  66. Schmidt LG, Kuhn S, Rommelspacher H (1993) A long-term trial of lisuride for relapse prevention in detoxified alcoholics. Pharmacopsychiatry 26: 199Google Scholar
  67. Schulz R, Wüster M, Duka T, Herz A (1980) Acute and chronic ethanol treatment changes endorphine levels in brain and pituitary. Psychopharmacology 68: 221–227PubMedCrossRefGoogle Scholar
  68. Sellers EM, Higgins GA, Sobell MB(1992) 5-HT and alcohol abuse. TIPS 13:69–75PubMedGoogle Scholar
  69. Sherer MA, Kumor KM, Jaffe JH (1989) Effects of intravenous cocaine are partially attenuated by haloperidol. Psychiat Res 27: 117–125CrossRefGoogle Scholar
  70. Sherif F, Gottfries CG, Alafuzoff I, Oreland L (1992) Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase ( MAO) in patients with Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 4: 227–240Google Scholar
  71. Smith TL (1983) Influence of chronic ethanol consumption on muscarinic cholinergic receptors and their linkage to phospholipid metabolism in mouse synaptosomes.Neuropharmacology 22: 661–663Google Scholar
  72. Spanagel R, Herz A, Shippenberg T (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 89: 2046–2050PubMedCrossRefGoogle Scholar
  73. Supavilai P, Karobath M (1980) Ethanol and other CNS depressants decrease GABA synthesis in mouse cerebral cortex and cerebellum in vivo. Life Sci 27: 1035–1040PubMedCrossRefGoogle Scholar
  74. Sutton I, Simmonds MH (1973) Effects of acute and chronic ethanol on the γ-aminobutyric acid system in rat brain. Biochem Pharmacol 22: 1685–1692PubMedCrossRefGoogle Scholar
  75. Tabakoff B, Munoz-Marcus M, Fields JZ (1979) Chronic ethanol feeding produces an increase in muscarinic cholinergic receptors in mouse brain. Life Sci 25: 2173–2180PubMedCrossRefGoogle Scholar
  76. Tabakashi S, Yamane H, Kondo H, Tani H, Kato N (1974) CSF monoamine metabolites in alcoholism: a comparative study with depression. Folia Psychiat Neurol Jpn 28: 347–354Google Scholar
  77. Topel H (1989) Endogene Opioide und Alkoholismus. In: Schied HW, Heimann H, Mayer K (Hrsg) Der chronische Alkoholismus. Fischer, Stuttgart New York, S 185–202Google Scholar
  78. Tran VT, Snyder SH, Major LF, Hawley RS (1981) GAB A receptors are increased in the brain of alcoholics. Ann Neurol 9: 289–292PubMedCrossRefGoogle Scholar
  79. Volpicelli JR, Alterman AI, Hayashida M, O’Brian CP (1992) Naltrexone in the treatment of alcohol dependence. Arch Gen Psychiat 49: 876–880PubMedGoogle Scholar
  80. Waddington JL (1986) Behavioural correlates of the action of selective D-1 dopamine receptor antagonists: Impact of SCH 23390 and SKF83566, and functionally interactive D-1: D-2 receptor systems. Biochem Pharmacol 35:3661–3667; and Rev Neurosci 1: 157–184Google Scholar
  81. Wadstein J, Skude G (1978) Does hypocalemia precede delirium tremens? Lancet II: 549–550CrossRefGoogle Scholar
  82. Whyte KF, Addis GJ, Whitesmith R, Reidl JL (1987) Adrenergic control of plasma magnesium in man. Clin Sci 72: 135–138PubMedGoogle Scholar
  83. Wiesbeck A. Böning J (1993) Current pharmacological studies of relapse prevention and additional candidate compounds. Pharmacopsychiatry 26:212Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. Rommelspacher
  • L. G. Schmidt

There are no affiliations available

Personalised recommendations