Vasogene Hypotension — Ursachen, Auswirkungen, Therapie

  • J. Peters
Part of the Klinische Anästhesiologie und Intensivtherapie book series (KAI, volume 47)

Zusammenfassung

Betrachtet man den mittleren arteriellen Blutdruck als durch Herzzeitvolumen und systemischen Gefäßwiderstand determiniert, so scheint der Begriff „vasogene Hypotension“ zunächst einmal einen pathologisch niedrigen Gefäßwiderstand zu implizieren, der bei normalem Herzzeitvolumen für diesen erniedrigten Blutdruck verantwortlich ist. Dementsprechend wären die Ursachen einer „vasogenen“ Hypo-tension in erster Linie, mittelbar oder unmittelbar, im Verlust oder der Abschwä-chung konstriktorischer bzw. in einer Zunahme dilatierender Einflüsse auf die glatte arterielle Gefäßmuskulatur zu suchen. Diese vordergründige Betrachtung wird allerdings durch die vielfältigen Interaktionen zwischen Hochdruck- und Nieder-drucksystem relativiert, die zunächst einer Erörterung bedürfen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abboud FM (1989) Ventricular syncope. Is the heart a sensory organ? N Engl J Med 320: 390–392PubMedCrossRefGoogle Scholar
  2. 2.
    Arimura H, Bosnjak Z, Hoka S, Kampine JP (1992) Catecholamine-induced changes in vascular capacitance and sympathetic nerve activity in dogs. Can J Physiol Pharmacol 70: 1021–1031PubMedCrossRefGoogle Scholar
  3. 3.
    Arndt JO (1986) The integrated function of veins. Eur J Anaesth 3: 343–370Google Scholar
  4. 4.
    Arndt JO, Höck A, Stanton-Hicks M, Stühmeier KD (1985) Peridural anesthesia and the distribution of blood in supine humans. Anesthesiology 63: 616–623PubMedCrossRefGoogle Scholar
  5. 5.
    Bannister R, Davies B, Holly E, Rosenthal T, Sever P (1979) Defective cardiovascular reflexes and supersensitivity to sympathomimetic drugs in autonomic failure. Brain 102: 163–176PubMedCrossRefGoogle Scholar
  6. 6.
    Barcroft H, Edholm OG (1945) On the vasodilatation in human skeletal muscle during posthaemorrhagic fainting. J Physiol 104: 161–175PubMedGoogle Scholar
  7. 7.
    Bevan JA, Brayden JE (1987) Nonadrenergic neural vasodilator mechanisms. Circ Res 60: 309–326PubMedGoogle Scholar
  8. 8.
    Billiar TR, Curran RD, Harbrecht BG, Stuehr DJ, Demetris AJ, Simmons RL (1990) Modulation of nitrogen oxide synthesis in vivo: N G-monomethyl-L-arginine inhibits endotoxin-induced nitrite/nitrate biosynthesis while promoting hepatic damage. J Leukocyte Biol 48: 565–569PubMedGoogle Scholar
  9. 9.
    Brigden W, Howarth S, Sharpey-Schafer EP (1950) Postural changes in the peripheral blood-flow of normal subjects with observations on vasovagal fainting reactions as a result of tilting, the lordotic posture, pregnancy, and spinal anaesthesia. Clin Sci 9: 75–91Google Scholar
  10. 10.
    Brinkmann A, Wolf CF, Walther FG, Junger S, Duntas L, Oettinger W, Rosenthal J, Seeling W, Ahnefeld FW (im Druck) Mesenteric traction syndrome during major abdominal surgery: relevance of cyclooxygenase inhibition by intravenous ibuprofen. Clin Physiol BiochemGoogle Scholar
  11. 11.
    Burgos LG, Ebert TJ, Asiddao C, Turner LA, Pattison CZ, Wang-Cheng R, Kampine JP (1989) Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology 70: 591–597PubMedCrossRefGoogle Scholar
  12. 12.
    Caldini P, Permutt S, Waddell JA, Riley RL (1974) Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res 34: 606–623PubMedGoogle Scholar
  13. 13.
    Caplan RA, Ward RJ, Posner K, Cheney FW (1988) Unexpected cardiac arrest during spinal anesthesia: a closed claims analysis of predisposing factors. Anesthesiology 68: 5–11PubMedCrossRefGoogle Scholar
  14. 14.
    Carpenter RL, Caplan RA, Brown DL, Stephenson C, Wu R (1992) Incidence and risk factors for side effects of spinal anesthesia. Anesthesiology 76: 906–916PubMedCrossRefGoogle Scholar
  15. 15.
    Cowley AW, Hinojosa-Laborde C, Barber BJ, Harder DR, Lombard JH, Greene AS (1989) Short-term autoregulation of systemic blood flow and cardiac output. NIPS 4: 219–225Google Scholar
  16. 16.
    England JD (1990) Guillain-Barré syndrome. Annu Rev Med 41: 1–6PubMedCrossRefGoogle Scholar
  17. 17.
    Epstein SE, Stampfer M, Beiser GD (1968) Role of the capacitance and resistance vessels in vasovagal syncope. Circulation 37: 524–533PubMedGoogle Scholar
  18. 18.
    Fauler J, Frölich JC (1989) Cardiovascular effects of leukotrienes. Cardiovasc Drugs Ther 3: 499–505PubMedCrossRefGoogle Scholar
  19. 19.
    Greenway CV, Lautt WW (1986) Blood volume, the venous system, preload, and cardiac output. Can J Physiol Pharmacol 64: 383–387PubMedCrossRefGoogle Scholar
  20. 20.
    Greenway CV, Seaman KL, Innes IR (1985) Norepinephrine on venous compliance and unstressed volume in cat liver. Am J Physiol 248: H468–476PubMedGoogle Scholar
  21. 21.
    Grubb BP, Gerard G, Roush K, Temesy-Armos P, Montford P, Elliott L, Hahn H, Brewster P (1991) Cerebral vasoconstriction during head-upright tilt-induced vasovagal syncope. A paradoxic and unexpected response. Circulation 84: 1157–1164Google Scholar
  22. 22.
    Hellebrekers LJ, Liard JF, Laborde AL, Greene AS, Cowley AW (1990) Regional autoregulatory responses during infusion of vasoconstrictor agents in conscious dogs. Am J Physiol 259: H1270–1277PubMedGoogle Scholar
  23. 23.
    Henry JP, Slaughter OL, Greiner T (1955) A medical massage suit for continuous wear. Angiology 6: 482–490PubMedCrossRefGoogle Scholar
  24. 24.
    Hoka S, Arimura H, Bosnjak Z, Kampine JP (1991) Regional venous outflow, blood volume, and sympathetic nerve activity during hypercapnia and hypoxic hypercapnia. Can J Physiol Pharmacol 70: 1032–1039CrossRefGoogle Scholar
  25. 25.
    Hopf HB, Weisbach B, Peters J (1990) High thoracic segmental epidural anesthesia diminishes sympathetic outflow to the legs, despite restriction of sensory blockade to the upper thorax. Anesthesiology 73: 882–889PubMedCrossRefGoogle Scholar
  26. 26.
    Hopf HB, Arand D, Peters J (1992) Sympathetic blockade by thoracic epidural anesthesia suppresses renin release in response to hypotension, but activates the vasopressin system in supine humans. Eur J Anaesth 9: 63–69Google Scholar
  27. 27.
    Hutcheson R, Whittle BJR, Boughton-Smith NK (1990) Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestimal damage in the rat. Br J Pharmacol 101: 815–820PubMedGoogle Scholar
  28. 28.
    Johnson PC (1986) Autoregulation of blood flow. Circ Res 59: 483–495PubMedGoogle Scholar
  29. 29.
    Jordan DA, Miller ED (1991) Subarachnoid blockade alters homeostasis by modifying compensatory splanchnic responses to hemorrhagic hypotension. Anesthesiology 75: 654661Google Scholar
  30. 30.
    Kety SS, King BD, Horvath SM, Jeffers WA, Hafkenschiel JH (1950) The effects of an acute reduction in blood pressure by means of differential spinal sympathetic block on the cerebral circulation of hypertensive patients. J Clin Invest 29: 402–407PubMedCrossRefGoogle Scholar
  31. 31.
    Kilbourn RG, Gross SS, Jubran A, Adams J, Griffith OW, Levi R, Lodato RF (1990) NGMethyl-L-arginine inhibits tumor necrosis factor-induced hypotension: Implications for the involvement of nitric oxide. Proc Natl Acad Sci USA 87: 3629–3632Google Scholar
  32. 32.
    Kilbourn RG, Jubran A, Gross SS, Griffith OW, Levi R, Adams J, Lodato RF (1990) Reversal of endotoxin-mediated shock by N°-Methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun 172: 1132–1138PubMedCrossRefGoogle Scholar
  33. 33.
    Klabunde RE, Ritger RC (1991) NG-Monomethyl-L-Arginine ( NMA) restores arterial blood pressure but reduces cardiac output in a canine model of endotoxic shock. Biochem Biophys Res Commun 178: 1135–1140Google Scholar
  34. 34.
    Knüttgen D, Büttner-Belz U, Gernot A, Doehn M (1990) Instabiles Blutdruckverhalten während der Narkose bei Diabetikern mit autonomer Neuropathie. Anästh Intensivther Notfallmed 25: 256–262PubMedCrossRefGoogle Scholar
  35. 35.
    Kostreva DR, Castaner A, Pedersen DH, Kampine JP (1981) Nonvagally mediated bradycardia during cardiac tamponade or severe hemorrhage. Cardiology 68: 65–79PubMedCrossRefGoogle Scholar
  36. 36.
    Levine BD, Lane LD, Buckey JC, Friedman DB, Blomqvist CG (1991) Left venticular pressure-volume and Frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Curculation 84: 1016–1023Google Scholar
  37. 37.
    Lichtenfeld P (1971) Autonomic dysfunction in the Guillain-Barrésyndrome. Am J Med 50: 772–780PubMedCrossRefGoogle Scholar
  38. 38.
    Lundin S, Wallin G, Elam M (1989) Intraneural recording of muscle sympathetic activity during epidurat anesthesia in humans. Anesth Analg 69: 788–793PubMedCrossRefGoogle Scholar
  39. 39.
    Mackey DC, Carpenter RL, Thompson GE, Brown DL, Bodily MN (1989) Bradycardia and asystole during spinal anesthesia: a report of three cases without morbidity. Anesthesiology 70: 866–868PubMedCrossRefGoogle Scholar
  40. 40.
    Mark AL (1983) The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1: 90–102PubMedCrossRefGoogle Scholar
  41. 41.
    McConachie I (1991) Vasovagal asystole during spinal anaesthesia. Anaesthesia 46: 281–282PubMedCrossRefGoogle Scholar
  42. 42.
    McLean APH, Mulligan GW, Otton P, McLean LD (1967) Hemodynamic alterations associated with epidural anesthesia. Surgery 62: 79–87Google Scholar
  43. 43.
    Meyer J, Traber LD, Nelson S, Lentz CW, Nakazawa H, Herndon DN, Noda H, Traber DL (1992) Reversal of hyperdynamic response to continuous endotoxin administration by inhibition of NO-Synthesis. J Appl Physiol 73: 324–328PubMedGoogle Scholar
  44. 44.
    Millar-Craig MW, Bishop CN, Raftery EB (1978) Circadian variation of blood pressure. Lancet I: 795–797CrossRefGoogle Scholar
  45. 45.
    Möhring J, Glänzer K, Maciel JA, Düsing R, Kramer HJ, Arbogast R, Koch-Weser J (1980) Greatly enhanced pressure response to antidiuretic hormone in patients with impaired cardiovascular reflexes due to idiopathic orthostatic hypotension. J Cardiovasc Pharmacol 2: 367–376PubMedCrossRefGoogle Scholar
  46. 46.
    Moncada S, Higgs EA (1991) Endogenous nitric oxide: Physiology, pathology and clinical relevance. Eur J Clin Invest 21: 361–374Google Scholar
  47. 47.
    Moncada S (1992) The L-arginine: nitric oxide pathway. Acta Physiol Scand 145: 201–227PubMedCrossRefGoogle Scholar
  48. 48.
    Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064PubMedGoogle Scholar
  49. 49.
    Nava E, Palmer RMJ, Moncada S (1991) Inhibition of nitric oxide synthesis in septic shock: how much is beneficial. Lancet 338: 1555–1557PubMedCrossRefGoogle Scholar
  50. 50.
    Paintal AS (1955) A study of ventricular pressure receptors and their role in the Bezold reflex. Q J Exp Physiol 40: 348–363Google Scholar
  51. 51.
    Peters J, Thouet H, Schlaghecke J, Arndt JO (1990) Endogenous vasopressin supports arterial blood pressure during epidural anesthesia. Anesthesiology 73: 694–702PubMedCrossRefGoogle Scholar
  52. 52.
    Peters J, Kutkuhn B, Medert HA, Schlaghecke J, Schüttler J, Arndt JO (1990) Sympathetic blockade by epidural anesthesia attenuates the cardiovascular response to severe hypoxemia. Anesthesiology 72: 134–144PubMedCrossRefGoogle Scholar
  53. 53.
    Peters J, Neuser D, Schaden W, Arndt JO (1992) Atrial natriuretic peptide decreases hepatic and cardiac, but increases liver blood content in supine humans. Basic Res Cardiol 87: 250–262PubMedCrossRefGoogle Scholar
  54. 54.
    Petros A, Benett D, Vallance P (1991) Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338: 1557–1558PubMedCrossRefGoogle Scholar
  55. 55.
    Pflug AE, Halter JB (1981) Effect of spinal anesthesia on adrenergic tone and the neuroendocrine responses to surgical stress in humans. Anesthesiology 55: 120–126PubMedCrossRefGoogle Scholar
  56. 56.
    Pouleur H, Covell JW, Ross J (1980) Effects of nitroprusside on venous return and central blood volume in the absence and presence of acute heart failure. Circulation 61: 328–337PubMedGoogle Scholar
  57. 57.
    Risöe C, Simonsen S, Rootwelt K, Sire S, Smiseth OA (1992) Nitroprusside and regional vascular capacitance in patients with severe congestive heart failure. Circulation 85: 997–1002PubMedGoogle Scholar
  58. 58.
    Rothe CF, Gaddis ML (1990) Autoregulation of cardiac output by passive elastic characteristics of the vascular capacitance system. Circulation 81: 360–368PubMedCrossRefGoogle Scholar
  59. 59.
    Rothe CF, Flanagan AD, Maass-Moreno R (1989) Reflex control of vascular capacitance during hypoxia, hypercapnia, or hypoxic hypercapnia. Can J Physiol Pharmacol 68: 384–391CrossRefGoogle Scholar
  60. 60.
    Sander-Jensen K, Secher NH, Astrup A, Christensen NJ, Giese J, Schwartz TW, Warberg J, Bie P (1986) Hypotension induced by passive head-up tilt: endocrine and circulatory mechanisms. Am J Physiol 251: R742–748PubMedGoogle Scholar
  61. 61.
    Sander-Jensen K, Mehlsen J, Secher NH, Bach FW, Bie P, Giese J, Schwartz TW, Trap-Jensen J, Warberg J (1987) Progressive central hypovolemia in man — resulting in a vasovagal syncope? Haemodynamic and endocrine variables during venous tourniquets of the thighs. Clin Physiol 7: 231–242PubMedCrossRefGoogle Scholar
  62. 62.
    Sander-Jensen K, Mehlsen J, Stadeager C, Christensen NJ, Fahrenkrug J, Schwartz TW, Warberg J, Bie P (1988) Increase in vagal activity during hypotensive lower-body negative pressure in humans. Am J Physiol 255: R149–156PubMedGoogle Scholar
  63. 63.
    Scherer U, Vissing S, Morgan B, Hanson P, Victor RG (1990) Vasovagal syncope after infusion of a vasodilator in a heart-transplant recipient. N Engl J Med 322: 602–604CrossRefGoogle Scholar
  64. 64.
    Schini VB, Vanhoutte PM (1991) Endothelin-1: a potent vasoactive peptide. Pharm Toxicol 69: 303–309CrossRefGoogle Scholar
  65. 65.
    Sherlock S (1990) Vasodilatation associated with hepatocellular disease: relation to functional organ failure. Gut 31: 365–367PubMedCrossRefGoogle Scholar
  66. 66.
    Shy GM, Drager GA (1960) A neurological syndrome associated with orthostatic hypotension. Arch Neurol 2: 511–527PubMedGoogle Scholar
  67. 67.
    Stadnicka A, Flynn NM, Bosnjak ZJ, Kampine JP (1993) Enflurane, halothane, and isoflurane attenuate contractile responses to exogenous and endogenous norepinephrine in isolated small mesenteric veins of the rabbit. Anesthesiology 78: 326–334PubMedCrossRefGoogle Scholar
  68. 68.
    Stanton-Hicks M, Höck A, Stühmeier K-D, Arndt JO (1987) Venoconstrictor agents mobilize blood from different sources and increase intrathoracic filling during epidural anesthesia in supine humans. Anesthesiology 66: 317–322PubMedCrossRefGoogle Scholar
  69. 69.
    Stekiel TA, Ozono K, McCallum JB, Bosnjak ZJ, Stekiel WJ, Kampine JP (1990) The inhibitory action of halothane on reflex constriction in mesentric capacitance veins. Anesthesiology 73: 1169–1178PubMedCrossRefGoogle Scholar
  70. 70.
    Steward DJ, Cernacek P, Costello KB, Rouleau JL (1992) Elevated endothelin-1 in heart failure and loss of normal response to postural change. Circulation 85: 510–517Google Scholar
  71. 71.
    Stockland O, Miller MM, Ilebekk A, Kiil F (1980) Mechanism of hemodynamic responses to occlusion of the descending thoracic aorta. Am J Physiol 238: H423–429Google Scholar
  72. 72.
    Stokland O, Molaug M, Thorvaldson J, Ilebekk A, Kiil F (1981) Cardiac effects of splanchnic and non-splanchnic blood volume redistribution during aortic occlusions in dogs. Acta Physiol Scand 113: 139–146PubMedCrossRefGoogle Scholar
  73. 73.
    Stokland O, Thorvaldson J, Ilebekk A, Kiil F (1982) Mechanism of blood pressure elevation during angiotensin infusion. Acta Physiol Scand 115: 455–465PubMedCrossRefGoogle Scholar
  74. 74.
    Strandgaard S (1976) Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation 53: 720–727PubMedGoogle Scholar
  75. 75.
    Tarkkila P, Isola J (1992) A regression model for identifying patients at high risk of hypotension, bradycardia and nausea during spinal anesthesia. Acta Anaesthesiol Scand 36: 554–558PubMedCrossRefGoogle Scholar
  76. 76.
    Thiemermann C, Vane J (990) Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182: 591–595CrossRefGoogle Scholar
  77. 77.
    Toda N, Okamura T (1992) Regulation by nitroxidergic nerve of arterial tone. NIPS 7: 148–152Google Scholar
  78. 78.
    Wallin BG, Sundlöf G (1982) Sympathetic outflow to muscles during vasovagal syncope. J Autonom Nery Syst 6: 287–291CrossRefGoogle Scholar
  79. 79.
    Wasserstrum N (1991) Nitroprusside in preeclampsia: circulatory distress and paradoxical bradycardia. Hypertension 18: 79–84PubMedGoogle Scholar
  80. 80.
    Waxman MB, Asta JA, Cameron DA (1992) Localization of the reflex pathway responsible for the vasodepressor reaction induced by inferior vena caval occlusion and isoproterenol. Can J Physiol Pharmacol 70: 882–889PubMedCrossRefGoogle Scholar
  81. 81.
    Wright CE, Rees DD, Moncada S (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res 26: 48–57PubMedCrossRefGoogle Scholar
  82. 82.
    Zimpfer M, Sit SP, Vatner SF (1981) Effects of anesthesia on the canine carotic chemoreceptor reflex. Circ Res 48: 400–406PubMedGoogle Scholar
  83. 83.
    Zimpfer M, Manders WT, Barger AC, Vatner SF (1982) Pentobarbital alters compensatory neural and humoral mechanisms in response to hemorrhage. Am J Physiol 243: H713–721PubMedGoogle Scholar
  84. 84.
    Zingarelli B, Squadrito F, Altavilla D, Calapai G, Campo GM, Calo M, Saitta A, Caputi AP (1992) Evidence for a role of nitric oxide in hypovolemic hemorrhagic shock. J Cardiovasc Pharmacol 19: 982–986PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. Peters

There are no affiliations available

Personalised recommendations