Skip to main content

Pathophysiologie der Myokardischämie

  • Chapter
  • 29 Accesses

Part of the book series: Klinische Anästhesiologie und Intensivtherapie ((KAI,volume 47))

Zusammenfassung

Die Myokardischämie wird traditionell als ein Mißverhältnis zwischen dem Energieangebot durch die Koronardurchblutung und dem Energiebedarf im wesentlichen für die Myokardkontraktion verstanden. Die Befunde, die diese Vorstellung stützen, haben jedoch dem grundsätzlich regionalen Charakter der Myokardischämie nicht Rechnung getragen. Einerseits wurde in vielen Fällen nicht die regionale myokardiale Durchblutung gemessen, andererseits wurde der regionale Energiebedarf der ischämischen Region aus dem Bedarf des gesamten Herzens oder dem Bedarf nichtischämischer Areale geschätzt. Die Koronargefäße werden in der klassischen Vorstellung der Myokardischämie als maximal weitgestellt angesehen, und Veränderungen der Myokarddurchblutung werden deshalb der extravaskulären Kompression zugeschrieben.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Heusch G (1989) Koronare Vasomotion bei Myokardischämie. Z Kardiol 78: 485–499

    PubMed  CAS  Google Scholar 

  2. Hoffman JIE (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29: 429–464

    Article  PubMed  CAS  Google Scholar 

  3. McHale PA, Dube GP, Greenfield JC Jr (1987) Evidence for myogenic vasomotor activity in the coronary circulation. Prog Cardiovasc Dis 30: 139–146

    Article  PubMed  CAS  Google Scholar 

  4. Jones CJH, Kuo L, Davis MJ, Chilian WM (1993) Myogenic and flow-dependent control mechanisms in the coronary microcirculation. Basic Res Cardiol 88: 2–10

    PubMed  CAS  Google Scholar 

  5. Olsson RA, Bünger R (1987) Metabolic control of coronary blood flow. Prog Cardiovasc Dis 29: 369–387

    Article  PubMed  CAS  Google Scholar 

  6. Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Prog Cardiovasc Dis 30: 349–380

    Article  PubMed  CAS  Google Scholar 

  7. Young MA, Knight DR, Vatner SF (1987) Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis 30: 211–234

    Article  PubMed  CAS  Google Scholar 

  8. Heusch G, Guth BD (1989) Neurogenic regulation of coronary vasomotor tone. Eur Heart J 10 (Suppl F): 6–14

    PubMed  Google Scholar 

  9. Heusch G (1990) a-adrenergic mechanisms in myocardial ischemia. Circulation 81:1–13

    Google Scholar 

  10. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116: 77–165

    PubMed  CAS  Google Scholar 

  11. Mates RE, Gupta RL, Bell AC, Klocke FJ (1978) Fluid dynamics of coronary artery stenosis. Circ Res 42: 152–162

    PubMed  CAS  Google Scholar 

  12. Gould KL (1980) Dynamic coronary stenosis. Am J Cardiol 45: 286–292

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz JS, Carlyle PF, Cohn JN (1979) Effect of dilation of the distal coronary bed on flow and resistance in severely stenotic coronary arteries in the dog. Am J Cardiol 43: 219–224

    Article  Google Scholar 

  14. Heusch G, Yoshimoto N, Müller-Ruchholtz ER (1982) Effects of heart rate on hemodynamic severity of coronary artery stenosis in the dog. Basic Res Cardiol 77: 562–573

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz JS, Tockman B, Cohn JN, Bache RJ (1982) Exercise-induced decrease in flow through stenotic coronary arteries in the dog. Am J Cardiol 50: 1409–1413

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz JS, Carlyle PF, Cohn JN (1980) Effect of coronary arterial pressure on coronary stenosis resistance. Circulation 61: 70–76

    PubMed  CAS  Google Scholar 

  17. Freudenberg H, Lichtlen PR (1981) Das normale Wandsegment bei Koronarstenosen–eine postmortale Studie. Z Kardiol 70: 863–869

    PubMed  CAS  Google Scholar 

  18. Rafflenbeul W, Lichtlen PR (1982) Zum Konzept der „dynamischen“ Koronarstenose. Z Kardiol 71: 439–444

    PubMed  CAS  Google Scholar 

  19. Santamore WP, Yelton BW Jr, Ogilby JD (1991) Dynamics of coronary occlusion in the pathogenesis of myocardial infarction. J Am Coll Cardiol 18: 1397–1405

    Article  PubMed  CAS  Google Scholar 

  20. Brown BG, Lee AB, Bolson EL, Dodge HT (1984) Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70: 18–24

    Article  PubMed  CAS  Google Scholar 

  21. Hossack KF, Brown BG, Stewart DK, Dodge HT (1984) Diltiazem-induced blockade of sympathetically mediated constriction of normal and diseased coronary arteries: lack of epicardial coronary dilatory effect in humans. Circulation 70: 465–471

    Article  PubMed  CAS  Google Scholar 

  22. Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP (1986) Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation 73: 865–876

    Article  PubMed  CAS  Google Scholar 

  23. MacAlpin RN (1980) Relation of coronary artery spasm to sites of organic stenosis. Am J Cardiol 46: 143–153

    Article  PubMed  CAS  Google Scholar 

  24. MacAlpin RN (1980) Contribution of dynamic vascular wall thickening to luminal narrowing during coronary arterial constriction. Circulation 60: 296–301

    Google Scholar 

  25. Serruys PW, Lablanche JM, Reiber JHC, Bertrand ME, Hugenholtz PG (1983) Contribution of dynamic vascular wall thickening to luminal narrowing during coronary arterial vasomotion. Z Kardiol 72 (Suppl 3): 116–123

    PubMed  Google Scholar 

  26. Heusch G, Deussen A, Schipke J, Thämer V (1984) al-and a2-adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6: 961–968

    Article  PubMed  CAS  Google Scholar 

  27. Schroeder JS, Bolen JL, Quint RA, Clark DA, Hayden WG, Higgins CB, Wexler L (1977) Provocation of coronary spasm with ergonovine maleate: new test with results in 57 patients undergoing coronary arteriography. Am J Cardiol 40: 487–491

    Article  PubMed  CAS  Google Scholar 

  28. Heupler FA Jr, Proudfit WL, Razavi M, Shirey EK, Greenstreet R, Sheldon WC (1978) Ergonovine maleate provocative test for coronary arterial spasm. Am J Cardiol 41: 631–640

    Article  PubMed  Google Scholar 

  29. Holtz J, Held W, Sommer O, Kühne G, Bassenge E (1982) Ergonovine-induced constrictions of epicardial coronary arteries in conscious dogs: a-adrenoceptors are not involved. Basic Res Cardiol 77: 278–291

    Article  PubMed  CAS  Google Scholar 

  30. Henry PD, Yokoyama M (1980) Supersensitivity of atherosclerotic rabbit aorta to ergonovine. J Clin Invest 66: 306–313

    Article  PubMed  CAS  Google Scholar 

  31. Heistad DD, Armstrong ML, Marcus ML, Piegors DJ, Mark AL (1984) Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res 54: 711–718

    PubMed  CAS  Google Scholar 

  32. Ginsburg R, Bristow MR, Kantrowitz N, Bairn S, Harrison DC (1981) Histamine provocation of clinical coronary artery spasm: implications concerning pathogenesis of variant angina pectoris. Am Heart J 102: 819–822

    Article  PubMed  CAS  Google Scholar 

  33. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H (1989) Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 14: 1181–1190

    Article  PubMed  CAS  Google Scholar 

  34. Vita JA, Treasure CB, Yeung AC, Vekshtein VI, Fantasia GM, Fish RD, Ganz P, Selwyn AP (1992) Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increased in sensitivity to constrictor effects of catecholamines. Circulation 85: 1390–1397

    PubMed  CAS  Google Scholar 

  35. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (London) 288: 373–376

    Article  CAS  Google Scholar 

  36. Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Cire Res 53: 557–573

    CAS  Google Scholar 

  37. Young MA, Vatner SF (1986) Enhanced adrenergic constriction of iliac artery with removal of endothelium in conscious dogs. Am J Physiol 250: H892 - H897

    PubMed  CAS  Google Scholar 

  38. Schipke J, Heusch G, Deussen A, Thaemer V (1985) Acetylcholine induces constriction of epicardial coronary arteries in anesthetized dogs after removal of endothelium. Drug Res 35: 926–929

    CAS  Google Scholar 

  39. Lamping KG, Marcus ML, Dole WP (1985) Removal of the endothelium potentiates canine large coronary artery constrictor responses to 5-hydroxytryptamine in vivo. Cire Res 57: 4654

    Google Scholar 

  40. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315: 1046–1051

    Article  PubMed  CAS  Google Scholar 

  41. Fish RD, Nabel EG, Selwyn AP, Ludmer PL, Mudge GH, Kirshenbaum JM, Schoen FJ, Alexander RW, Ganz P (1988) Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest 81: 21–31

    Article  PubMed  CAS  Google Scholar 

  42. Treasure CB, Manoukian SV, Klein JL, Vita JA, Nabel EG, Renwick GH, Selwyn AP, Alexander RW, Ganz P (1992) Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ Res 71: 776–781

    PubMed  CAS  Google Scholar 

  43. Holtz J, Giesler M, Bassenge E (1983) Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiaol 72 (Suppl 3): 98–106

    CAS  Google Scholar 

  44. Holtz J, Förstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6: 1161–1169

    PubMed  CAS  Google Scholar 

  45. Hintze TH, Vatner SF (1984) Reactive dilation of large coronary arteries in conscious dogs. Circ Res 54: 50–57

    PubMed  CAS  Google Scholar 

  46. Tanner FC, Noll G, Boulanger CM, Lüscher TF (1991) Oxidized low density lipoproteins inhibit relaxation of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83: 2012–2020

    Google Scholar 

  47. Moncada S, Palmer RMJ, Higgs EA (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38: 1709–1715

    Google Scholar 

  48. Harrison DG, Marcus ML, Dellsperger KC, Lamping KG, Tomanek RJ (1991) Pathophysiology of myocardial perfusion in hypertension. Circulation 83 (Suppl III): III-14-III-18

    Google Scholar 

  49. Brush JE Jr, Faxon DP, Salmon S, Jacobs AK, Ryan TJ (1992) Abnormal endothelium-dependent coronary vasomotion in hypertensive patients. J Am Coll Cardiol 19: 809–815

    Article  PubMed  Google Scholar 

  50. Fam WM, McGregor M (1968) Effect of nitroglycerin and dipyridamole on regional coronary resistance. Circ Res 22: 649–659

    PubMed  CAS  Google Scholar 

  51. Kelley KO, Feigl EO (1978) Segmental alpha-receptor-mediated vasoconstriction in the canine coronary circulation. Circ Res 43: 908–917

    PubMed  CAS  Google Scholar 

  52. Chierchia S, Davies G, Berkenboom G, Crea F, Crean P, Maseri A (1984) a-adrenergic receptors and coronary spasm: an elusive link. Circulation 69: 8–14

    Article  PubMed  CAS  Google Scholar 

  53. Winniford MD, Filipchuk N, Hillis LD (1983) Alpha-adrenergic blockade for variant angina: a long-term, double-blind, randomized trial. Circulation 67: 1185–1188

    Article  PubMed  CAS  Google Scholar 

  54. DeCaterina R, Carpeggiani C, L’Abbate A (1984) A double-blind, placebo-controlled study of ketanserin in patients with Prinzmetal’s angina: evidence against a role of serotonin in the genesis of coronary vasospasm. Circulation 69: 889–894

    Article  PubMed  Google Scholar 

  55. Pitarys II CJ, Virmani R, Vildibill HD Jr, Jackson EK, Forman MB (1991) Reduction of myocardial reperfusion injury by intravenous adenosine administered during the early reperfusion period. Circulation 83: 237–247

    PubMed  Google Scholar 

  56. Clarke JG, Kerwin R, Larkin S, Lee Y, Yacoub M, Davies GJ, Hackett D, Dawbarn D, Bloom SR, Maseri A (1987) Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1, 2: 1057–1059

    Article  PubMed  CAS  Google Scholar 

  57. Mosher P, Ross J Jr, McFate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14: 250–259

    PubMed  CAS  Google Scholar 

  58. Marcus ML, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, Fastenow C, Brody M (1981) Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res 49: 877–891

    PubMed  CAS  Google Scholar 

  59. Klocke FJ (1987) Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 76: 1183–1189

    Article  PubMed  CAS  Google Scholar 

  60. Gould KL, Lipscomb K, Calvert C (1975) Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 51: 1085–1094

    PubMed  CAS  Google Scholar 

  61. Guyton RA, McClenathan JH, Newman GE, Michaelis LL (1977) Significance of subendocardial S-T segment elevation caused by coronary stenosis in the dog. Epicardial S-T segment depression, local ischemia and subsequent necrosis. Am J Cardiol 40: 373–380

    Google Scholar 

  62. Rouleau J, Boerboom LE, Surjadhana A, Hoffman JIE (1979) The role of autoregulation and tissue diastolic pressures in the transmural distribution of left ventricular blood flow in anesthetized dogs. Cire Res 45: 804–815

    CAS  Google Scholar 

  63. Gallagher KP, Folts JD, Shebuski RJ, Rankin JHG, Rowe GG (1980) Subepicardial vasodilator reserve in the presence of critical coronary stenosis in dogs. Am J Cardiol 46: 6773

    Article  Google Scholar 

  64. Gorman MW, Sparks HV Jr (1982) Progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ Res 51: 411–420

    PubMed  CAS  Google Scholar 

  65. Aversano T, Becker LC (1985) Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 248: H403 - H411

    PubMed  CAS  Google Scholar 

  66. Canty JM, Klocke FJ (1985) Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71: 370–377

    Article  PubMed  Google Scholar 

  67. Pantely GA, Bristow JD, Swenson LJ, Ladley HD, Johnson WB, Anselone CG (1985) Incomplete coronary vasodilation during myocardial ischemia in swine. Am J Physiol 249: H638 - H647

    PubMed  CAS  Google Scholar 

  68. Grattan MT, Hanley FL, Stevens MB, Hoffman JIE (1986) Transmural coronary flow reserve patterns in dogs. Am J Physiol 250: H276 - H283

    PubMed  CAS  Google Scholar 

  69. Heusch G, Guth BD, Seitelberger R, Ross J Jr (1987) Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation 75: 482–490

    Article  PubMed  CAS  Google Scholar 

  70. Dole WP (1987) Autoregulation of the coronary circulation. Prog Cardiovasc Dis 29: 293–323

    Article  PubMed  CAS  Google Scholar 

  71. Dole WP, Nuno DW (1986) Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Circ Res 59: 202–215

    PubMed  CAS  Google Scholar 

  72. Gewirtz H, Brautigan DL, Olsson RA, Brown P, Most AS (1983) Role of adenosine in the maintenance of coronary vasodilation distal to a severe coronary artery stenosis. Observations in conscious domestic swine. Circ Res 53: 42–51

    Google Scholar 

  73. Bretschneider HJ (1967) Aktuelle Probleme der Koronardurchblutung and des Myokardstoffwechsels. Regensburger Jbl Ärztl Fortb 15: 1–27

    Google Scholar 

  74. Hoffman JIE (1978) Determinants and prediction of transmural myocardial perfusion. Circulation 58: 381–391

    PubMed  CAS  Google Scholar 

  75. Coggins DL, Flynn AE, Austin RE Jr, Aldea GS, Muehrcke D, Goto M, Hoffman JIE (1990) Nonuniform loss of regional flow reserve during myocardial ischemia in dogs. Circ Res 67: 253–264

    PubMed  CAS  Google Scholar 

  76. Canty JM (1992) Barbiturate-anesthesia does not affect coronary autoregulatory responses in closed-chest dogs. Faseb J 6: A1751 (Abstr)

    Google Scholar 

  77. Bristow JD, Arai AE, Anselone CG, Pantely GA (1991) Response to myocardial ischemia as a regulated process. Circulation 84: 2580–2587

    PubMed  CAS  Google Scholar 

  78. Heusch G, Deussen A, Thämer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nery Syst 13: 311–326

    Article  CAS  Google Scholar 

  79. Austin RE, Aldea GS, Coggins DL, Flynn AE, Hoffman JIE (1990) Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ Res 67: 319–331

    Google Scholar 

  80. Buffington CW, Feigl EO (1981) Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog. Circ Res 48: 416–423

    PubMed  CAS  Google Scholar 

  81. Johannsen UJ, Mark AL, Marcus ML (1982) Responsiveness to cardiac sympathetic nerve stimulation during maximal coronary dilation produced by adenosine. Circ Res 50: 510–517

    PubMed  CAS  Google Scholar 

  82. Evers AS, Murphree S, Saffitz JE, Jakschik BA, Needleman P (1985) Effects of endogenously produced leukotrienes, thromboxane, and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest 75: 992–999

    Article  PubMed  CAS  Google Scholar 

  83. Nichols WW, Mehta JL, Thompson L, Donnelly WH (1988) Synergistic effects of LTC4 and TxA2 on coronary flow and myocardial function. Am J Physiol 255: H153 - H159

    PubMed  CAS  Google Scholar 

  84. Ertl G (1987) Coronary vasoconstriction in experimental myocardial ischemia. J Cardiovasc Pharmacol 9 (Suppl 2): S 9-S 17

    Article  PubMed  CAS  Google Scholar 

  85. Pantely GA, Ladley HD, Anselone CG, Bristow JD (1985) Vasopressin-induced coronary constriction at low perfusion pressures. Cardiovasc Res 19: 433–441

    Article  PubMed  CAS  Google Scholar 

  86. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53: 8–15

    PubMed  CAS  Google Scholar 

  87. Heusch G, Deussen A (1984) Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6: 378–383

    Article  PubMed  CAS  Google Scholar 

  88. Heusch G (1985) Sympathische Herznerven and Myokardischämie. Thieme, Stuttgart New York

    Google Scholar 

  89. Tölle TR, Schipke JD, Schulz R, Thämer V, Haase J (1986) The nociceptive stimulation induced myocardial ischemia is prevented by fentanyl. Neurosci Lett Suppl 26: 522

    Google Scholar 

  90. Heusch G, Schipke J, Thämer V (1985) Clonidine prevents the sympathetic initiation and aggravation of poststenotic myocardial ischemia. J Cardiovasc Pharmacol 7: 1176–1182

    Article  PubMed  CAS  Google Scholar 

  91. Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross J Jr (1988) Intracoronary alpha 2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62: 436–442

    PubMed  CAS  Google Scholar 

  92. Laxson DD, Dai X-Z, Homans DC, Bache RJ (1989) The role of ar and u2-adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ Res 65: 1688–1697

    PubMed  CAS  Google Scholar 

  93. Chilian WM (1991) Functional distribution of al-and a2-adrenergic receptors in the coronary microcirculation. Circulation 84: 2108–2122

    PubMed  CAS  Google Scholar 

  94. Liang IYS, Jones CE (1985) Alpha 1-adrenergic blockade increases coronary blood flow during coronary hypoperfusion. Am J Physiol 249: H1070 - H1077

    PubMed  CAS  Google Scholar 

  95. Guth BD, Miura T, Thaulow E, Heusch G, Ross J Jr (1993) Alpha 1-adrenergic blockade reduces exercise-induced regional myocardial ischemia in dogs. Basic Res Cardiol 88: 282–296

    PubMed  CAS  Google Scholar 

  96. Nathan HJ, Feigl EO (1986) Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250: H645 - H653

    PubMed  CAS  Google Scholar 

  97. Miyamoto MI, Rockman HA, Guth BD, Heusch G, Ross J Jr (1991) Effect of a-adrenergic stimulation on regional contractile function and myocardial blood flow with and without ischemia. Circulation 84: 1715–1724

    PubMed  CAS  Google Scholar 

  98. Constantine JW, Lebel W (1980) Complete blockade by phenoxybenzamine of alphas-but not alpha2-vascular receptors in dogs and the effect of propranolol. Naunyn Schmiedebergs Arch Pharmacol 314: 149–156

    Article  PubMed  CAS  Google Scholar 

  99. Chen D, Dai X-Z, Zimmerman BG, Bache RJ (1988) Postsynaptic a1- and a2-adrenergic mechanisms in coronary vasoconstriction. J Cardiovasc Pharmacol 11: 61–67

    Article  PubMed  Google Scholar 

  100. Heusch G, Yoshimoto N, Heegemann H, Thämer V (1983) Interaction of methoxamine with compensatory vasodilation distal to coronary stenoses. Drug Res 33: 1647–1650

    CAS  Google Scholar 

  101. Deussen A, Heusch G, Thämer V (1985) Alpha 2-adrenoceptor–mediated coronary vasoconstriction persists after exhaustion of coronary dilator reserve. Eur J Pharmacol 115: 147–153

    Article  PubMed  CAS  Google Scholar 

  102. Chilian WM, Ackell PH (1988) Transmural differences in sympathetic coronary constriction during exercise in the presence of coronary stenosis. Circ Res 62: 216–225

    PubMed  CAS  Google Scholar 

  103. Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58: 68–82

    Google Scholar 

  104. Mueller HS, Rao PS, Rao PB, Gory DJ, Mudd JG, Ayres SM (1982) Enhanced transcardiac 1-norepinephrine response during cold pressor test in obstructive coronary artery disease. Am J Cardiol 50: 1223–1228

    Article  PubMed  CAS  Google Scholar 

  105. Mudge GH, Grossman W, Mills RM Jr, Lesch M, Braunwald E (1976) Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 295: 1333–1337

    Article  PubMed  Google Scholar 

  106. Mudge GH, Goldberg S, Gunther S, Mann T, Grossman W (1979) Comparison of metabolic and vasoconstrictor stimuli on coronary vascular resistance in man. Circulation 59: 544–550

    PubMed  Google Scholar 

  107. Malacoff RF, Mudge GH, Holman BL, Idoine J, Bifolck L, Cohn PF (1983) Effect of the cold pressor test on regional myocardial blood flow in patients with coronary artery disease. Am Heart J 106: 78–84

    Article  PubMed  CAS  Google Scholar 

  108. Indolfi C, Piscione F, Villari B, Russolillo E, Rendina V, Golino P, Condorelli M, Chiariello M (1992) Role of a2-adrenoceptors in normal and atherosclerotic human coronary circulation. Circulation 86: 1116–1124

    PubMed  CAS  Google Scholar 

  109. Berkenboom GM, Abramowicz M, Vandermoten P, Degre SG (1986) Role of alphaadrenergic coronary tone in exercise-induced angina pectoris. Am J Cardiol 57: 195–198

    Article  PubMed  CAS  Google Scholar 

  110. Chierchia S, Pratt T, DeCoster P, Maseri A (1985) Alpha-adrenergic control of collateral flow: another determinant of coronary flow reserve. Circulation 72 (Suppl I II ): 190 (Abstr)

    Google Scholar 

  111. Motulsky HJ, Snavely MD, Hughes RJ, Insel PA (1983) Interaction of verapamil and other calcium channel blockers with at-and a2-adrenergic receptors. Circ Res 52: 226–231

    PubMed  Google Scholar 

  112. Rowe GG (1970) Inequalities of myocardial perfusion in coronary artery disease („coronary steal“). Circulation 42: 193–194

    PubMed  CAS  Google Scholar 

  113. Baumgart D, Ehring T, Krajcar M, Heusch G (1993) A proischemic effect of nisoldipine: Relation to a decrease in perfusion pressure and comparison to dipyridamole. Cardiovasc Res 27: 1254–1259

    Google Scholar 

  114. Heusch G, Yoshimoto N (1983) Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pfluegers Arch 397: 284–289

    Article  CAS  Google Scholar 

  115. Busch P, Deussen A, Heusch G (1988) Sympathetic effects on segmental coronary resistances and their role in coronary collateral perfusion. J Appl Cardiol 3: 145–160

    Google Scholar 

  116. Diemer HP, Wichmann J, Lochner W (1977) Coronary collateral flow: effect of drugs and perfusion pressure. Basic Res Cardiol 72: 332–343

    Article  PubMed  CAS  Google Scholar 

  117. Ertl G, Simm F, Wichmann J, Fuchs M, Lochner W (1979) The dependence of coronary collateral blood flow on regional vascular resitances. Naunyn Schmiedebergs Arch Pharmacol 308: 265–272

    Article  PubMed  CAS  Google Scholar 

  118. Maruoka Y, McKirnan MD, Engler RL, Longhurst JC (1987) Functional significance of alpha-adrenergic receptors in mature coronary collateral circulation of dogs. Am J Physiol 253: H582 - H590

    PubMed  CAS  Google Scholar 

  119. Harrison DG, Chilian WM, Marcus ML (1986) Absence of functioning alpha-adrenergic receptors in mature canine coronary collaterals. Circ Res 59: 133–142

    PubMed  CAS  Google Scholar 

  120. Gallagher KP, Osakada G, Matsuzaki M, Kemper WS, Ross J Jr (1982) Myocardial blood flow and function with critical coronary stenosis in exercising dogs. Am J Physiol 243: H698 - H707

    PubMed  CAS  Google Scholar 

  121. Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross J Jr (1984) Effects of 13-blockade on regional myocardial flow and function during exercise. Am J Physiol 247: 1152 - H60

    Google Scholar 

  122. Matsuzaki M, Gallagher KP, Patritti J, Tajimi T, Kemper WS, White FC, Ross J Jr (1984) Effects of a calcium-entry blocker (diltiazem) on regional myocardial flow and function during exercise in conscious dogs. Circulation 69: 801–814

    Article  PubMed  CAS  Google Scholar 

  123. Matsuzaki M, Guth BD, Tajimi T, Kemper WS, Ross J Jr (1985) Effects of the combination of diltiazem and atenolol on exercis-induced regional myocardial ischemia in conscious dogs. Circulation 72: 233–243

    Article  PubMed  CAS  Google Scholar 

  124. Guth BD, Tajimi T, Seitelberger R, Lee JD, Matsuzaki M, Ross J Jr (1986) Experimental exercise-induced ischemia: Drug therapy can eliminate regional dysfunction and oxygen supply-demand imbalance. J Am Coll Cardiol 7: 1036–1046

    Google Scholar 

  125. Guth BD, Heusch G, Seitelberger R, Ross J Jr (1987) Mechanism of beneficial effect of betaadrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ Res 60: 738–746

    PubMed  CAS  Google Scholar 

  126. Guth BD, Heusch G, Seitelberger R, Ross J Jr (1987) Elimination of exercise-induced regional myocardial dysfunction by a bradycardic agent in dogs with chronic coronary stenosis. Circulation 75: 661–669

    Article  PubMed  CAS  Google Scholar 

  127. Heusch G (1991) The relationship between regional blood flow and contractile function in normal, ischemic, and reperfused myocardium. Basic Res Cardiol 86: 197–218

    Article  PubMed  CAS  Google Scholar 

  128. Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross J Jr (1983) Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52: 716–729

    PubMed  CAS  Google Scholar 

  129. Indolfi C, Guth BD, Miura T, Miyazaki S, Schulz R, Ross J Jr (1989) Mechanisms of improved ischemic regional dysfunction by bradycardia. Studies on UL-FS 49 in swine. Circulation 80: 983–993

    Article  PubMed  CAS  Google Scholar 

  130. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56: 786–794

    Google Scholar 

  131. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72 (Suppl V): V-123-V-135

    Google Scholar 

  132. Schipke JD (1991) Down-regulation and hibernating myocardium. Z Kardiol 80: 703–711

    PubMed  CAS  Google Scholar 

  133. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985

    Article  PubMed  CAS  Google Scholar 

  134. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66: 1146–1149

    Article  PubMed  CAS  Google Scholar 

  135. Bolli R (1990) Mechanism of myocardial „stunning“. Circulation 82: 723–738

    Article  PubMed  CAS  Google Scholar 

  136. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136

    Article  PubMed  CAS  Google Scholar 

  137. Jennings RB, Murry CE, Reimer KA (1991) Preconditioning myocardium with ischemia. Cardiovasc Drugs Ther 5: 933–938

    Article  PubMed  CAS  Google Scholar 

  138. Marban E (1991) Myocardial stunning and hibernation. The physiology behind the colloquialisms. Circulation 83: 681–688

    PubMed  CAS  Google Scholar 

  139. Schaper W (1991) „Hibernating myocardium“. Zeit für einen Paradigmenwechsel? Z Kardiol 80:712–715

    PubMed  CAS  Google Scholar 

  140. Tennant R, Wiggers CJ (1935) The effect of coronary occlusion on myocardial contraction. Am J Physiol 112: 351–361

    Google Scholar 

  141. Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44: 1115–1121

    Article  PubMed  CAS  Google Scholar 

  142. Guth BD, Martin JF, Heusch G, Ross J Jr (1987) Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 10: 673–681

    Article  PubMed  CAS  Google Scholar 

  143. Arai AE, Pantely GA, Thoma WJ, Anselone CG, Bristow JD (1992) Energy metabolism and contractile function after 15 beats of moderate myocardial ischemia. Circ Res 70: 1137–1145

    PubMed  CAS  Google Scholar 

  144. Katz AM (1973) Effects of ischemia on the contractile processes of heart muscle. Am J Cardiol 32: 456–460

    Article  PubMed  CAS  Google Scholar 

  145. Kübler W, Katz AM (1977) Mechanism of early „pump“ failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am J Cardiol 40: 467–471

    Article  PubMed  Google Scholar 

  146. Noma A (1983) ATP-regulated K channels in cardiac muscle. Nature (London) 305: 147–148

    Article  CAS  Google Scholar 

  147. Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel and seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 6: 228–229

    Article  Google Scholar 

  148. Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K channels to Al receptors by G proteins in rat ventricular myocytes. Am J Physiol 259: H820 - H826

    PubMed  CAS  Google Scholar 

  149. Nichols CG, Ripoll C, Lederer WJ (1991) ATP-sensitive potassium channel modulation of guinea pig ventricular action potential and contraction. Circ Res 68: 280–287

    PubMed  CAS  Google Scholar 

  150. Reffelmann T,’ Kammermeier H (1992) Energetics and function of hypoxic isolated rat hearts as influenced by modulation of the K--ATP-channel-system. Pfluegers Arch 420 (Suppl 1): R105

    Google Scholar 

  151. Ingwa1l JS, Bittl JA (1987) Regulation of heart creatine kinase. Basic Res Cardiol 82 (Suppl 1): 93–101

    PubMed  CAS  Google Scholar 

  152. Kammermeier H (1963) Verhalten von Adenin-Nukleotiden and Kreatininphosphat im Herzmuskel bei funktioneller Erholung nach länger dauernder Asphyxie. Verh Dtsch Ges Kreislaufforsch 30: 206–211

    Google Scholar 

  153. Camacho SA, Lanzer P, Toy BJ, Gober J, Velenza M, Botvinick EH, Weiner MW (1988) In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31p magnetic resonance spectroscopy study. Am Heart J 116: 701–708

    Article  PubMed  CAS  Google Scholar 

  154. Kammermeier H, Schmidt P, Jüngling E (1982) Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol 14: 267–277

    Article  PubMed  CAS  Google Scholar 

  155. Jacobus WE, Pores IH, Lucas SK, Weisfeldt ML, Flaherty JT (1982) Intracellular acidosis and contractility in normal and ischemic hearts examined by 31p NMR. J Mol Cell Cardiol 14: 13–20

    Article  PubMed  CAS  Google Scholar 

  156. Kentish JC (1986) The effects of inorganic phosphate and creatine phophate on the force production in skinned muscle from rat vesicle. J Physiol 370: 585–604

    PubMed  CAS  Google Scholar 

  157. Krause S, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res 55: 176–184

    PubMed  CAS  Google Scholar 

  158. Koretsune Y, Corretti MC, Kusuoka H, Marban E (1991) Mechanism of early ischemic contractile failure. Circ Res 68: 255–262

    PubMed  CAS  Google Scholar 

  159. Gallagher KP, Kumada T, Koziol JA, McKown MD, Kemper WS, Ross J Jr (1980) Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 62: 1266–1274

    PubMed  CAS  Google Scholar 

  160. Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47: 201–207

    PubMed  CAS  Google Scholar 

  161. Ross J Jr (1989) Mechanisms of regional ischemia and antianginal drug action during exercise. Prog Cardiovasc Dis 31: 455–466

    Article  PubMed  Google Scholar 

  162. Ross J Jr (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83: 1076–1083

    PubMed  Google Scholar 

  163. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr (1983) Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68: 170–182

    Article  PubMed  CAS  Google Scholar 

  164. Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS (1988) Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 78: 729–735

    Article  PubMed  CAS  Google Scholar 

  165. Pantely GA, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow J, Bristow JD (1990) Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 67: 1481–1493

    PubMed  CAS  Google Scholar 

  166. Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD (1991) Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 69: 1458–1469

    PubMed  CAS  Google Scholar 

  167. Schulz R, Guth BD, Pieper K, Martin C, Heusch G (1992) Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery: a model of short-term hibernation. Circ Res 70: 1282–1295

    PubMed  CAS  Google Scholar 

  168. Guth BD, Schulz R, Heusch G (1993) Time course and mechanisms of contractile dysfunction during acute myocardial ischemia. Circulation 87 [Suppl IV]:IV35–IV42

    Google Scholar 

  169. Schulz R, Miyazaki S, Miller M, Thaulow E, Heusch G, Ross J Jr, Guth BD (1989) Consequences of regional inotropic stimulation of ischemic myocardium on regional myocardial blood flow and function in anesthetized swine. Circ Res 64: 1116–1126

    PubMed  CAS  Google Scholar 

  170. Schulz R, Rose J, Martin C, Brodde 0E, Heusch G (1993) Development of short-term myocardial hibernation: its limitation by the severity of ischemia and inotropic stimulation. Circulation 88: 684–695

    CAS  Google Scholar 

  171. Rose J, Schulz R, Martin C, Heusch G (1993) Postejection wall thickening as a marker of successful short-term hibernation. Cardiovasc Res 27: 1306–1311

    Article  PubMed  CAS  Google Scholar 

  172. Rahimtoola SH (1982) Coronary bypass surgery for chronic angina–1981. Circulation 65: 225–241

    Article  PubMed  CAS  Google Scholar 

  173. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117: 211–221

    Article  PubMed  CAS  Google Scholar 

  174. Tillisch J, Brunken R, Marshall R, Schwaier M, Mandelkern M, Phelps M, Schelbert H (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314: 884–888

    Article  PubMed  CAS  Google Scholar 

  175. Wolpers HG, Schwaiger M (1990) Metabolic imaging of ischemic heart disease by positron emission tomography. In: Heusch G (ed) Pathophysiology and rational pharmacotherapy of myocardial ischemia. Steinkopff, Springer, Darmstadt New York, pp 59–81

    Google Scholar 

  176. Marwick TH, Maclntyre WJ, Lafont A, Nemec JJ, Salcedo EE (1992) Metabolic response of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation 85: 1347–1353

    Google Scholar 

  177. Flameng W, Suy R, Schwarz F, Borgers M, Piessens J, Thone F, van Ermen H, de Geest H (1981) Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of reversible segmental asynergy postrevascularization surgery. Am Heart J 102: 846–857

    CAS  Google Scholar 

  178. Vonoverschelde JLJ, Wijns W, Depre C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87: 1513–1523

    Google Scholar 

  179. Bolli R (1992) Myocardial „Stunning“ in man. Circulation 86: 1671–1691

    PubMed  CAS  Google Scholar 

  180. Nayler WG, Elz JS, Buckley DJ (1988) The stunned myocardium: effect of electrical and mechanical arrest and osmolarity. Am J Physiol 254: H60 - H69

    Google Scholar 

  181. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987) Pathophysiology and pathogenesis of stunned myocardium: depressed Cat` activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79: 950–961

    Article  PubMed  CAS  Google Scholar 

  182. Lange R, Ware J, Kloner RA (1984) Absence of a cumulative deterioration of regional function during three repeated 5 or 15 minute coronary occlusions. Circulation 69: 400–408

    Article  PubMed  CAS  Google Scholar 

  183. Nicklas JM, Becker LC, Bulkley BH (1985) Effects of repeated brief coronary occlusion on regional left ventricular function and dimension in dogs. Am J Cardiol 56: 473–478

    Article  PubMed  CAS  Google Scholar 

  184. Thaulow E, Guth BD, Heusch G, Gilpin E, Schulz R, Kröger K, Ross J Jr (1989) Characteristics of regional myocardial stunning after exercise in dogs with chronic coronary stenosis. Am J Physiol 257: H113 - H119

    PubMed  CAS  Google Scholar 

  185. Kloner RA, Allen J, Cox TA, Zheng Y, Ruiz CE (1991) Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol 68: 329–334

    Article  PubMed  CAS  Google Scholar 

  186. Arnold JMO, Braunwald E, Sandor T, Kloner RA (1985) Inotropic stimulation of reperfused myocardium with dopamine: effects on infarct size and myocardial function. J Am Coll Cardiol 6: 1036–1044

    Article  Google Scholar 

  187. Arnold JMO, Antman EM, Przyklenk K, Braunwald E, Sandor T, Vivaldi MT, Schoen FJ, Kloner RA (1987) Differential effects of reperfusion on incidence of ventricular arrhythmias and recovery of ventricular function at 4 days following coronary occlusion. Am Heart J 113: 1055–1065

    Article  PubMed  CAS  Google Scholar 

  188. Przyklenk K, Patel B, Kloner RA (1987) Diastolic abnormalities of postischemic „stunned“ myocardium. Am J Cardiol 60: 1211–1213

    Article  PubMed  CAS  Google Scholar 

  189. Charlat ML, O’Neill PG, Hartley CJ, Roberts R, Bolli R (1989) Prolonged abnormalities of left ventricular diastolic wall thinning in the „stunned“ myocardium in conscious dogs: time course and relation to systolic function. J Am Coll Cardiol 13: 185–194

    Article  PubMed  CAS  Google Scholar 

  190. Ehring T, Schulz R, Schipke JD, Heusch G (1992) Diastolic dysfunction of stunned myocardium. Am J Cardiovasc Pathol 4: 277–285

    Google Scholar 

  191. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C (1987) Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional („stunned“) but viable myocardium. J Am Coll Cardiol 10: 1322–1334

    Article  PubMed  CAS  Google Scholar 

  192. Charney RH, Takahashi S, Zhao M, Sonnenblick EH, Eng C (1992) Collagen loss in the stunned myocardium. Circulation 85: 1483–1490

    PubMed  CAS  Google Scholar 

  193. Whittaker P, Boughner DR, Kloner RA, Przyklenk K (1991) Stunned myocardium and myocardial collagen damage: differential effects of single and repeated occlusions. Am Heart J 121: 434–441

    Article  PubMed  CAS  Google Scholar 

  194. Ehring T, Heusch G (1990) Left ventricular asynchrony: an indicator of regional myocardial dysfunction. Am Heart J 120: 1047–1057

    Article  PubMed  CAS  Google Scholar 

  195. Heusch G, Guth BD, Gilpin E, Oudiz R, Matsuzaki M, Ross J Jr (1987) Determinants of recovery of regional contractile function after exercise-induced ischemia in conscious dogs. Fed Proc 46: 834 (Abstr)

    Google Scholar 

  196. Bolli R, Zhu W-X, Thornby JI, O’Neill PG, Robets R (1988) Time course and determinants of recovery of function after reversible ischemia in a conscious dogs. Am J Physiol 254: H102 - H114

    PubMed  CAS  Google Scholar 

  197. Bolli R, Patel BS, Hartley CJ, Thornby JI, Jeroudi MO, Roberts R (1989) Nonuniform transmural recovery of contractile function in stunned myocardium. Am J Physiol 257: H375 - H385

    PubMed  CAS  Google Scholar 

  198. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E (1990) Excitation-contraction coupling in postischemic myocardium. Does failure of activator Cam’ transients underlie stunning? Circ Res 66: 1268–1276

    PubMed  CAS  Google Scholar 

  199. Bolli R (1988) Oxygen-derived free radicals and postischemic myocardial dysfunction („stunned myocardium“). J Am Coll Cardiol 12: 239–249

    Article  PubMed  CAS  Google Scholar 

  200. Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R, McCay PB (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 86: 4695–4699

    Article  PubMed  CAS  Google Scholar 

  201. Krause SM, Jacobus WE, Becker LC (1989) Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic „stunned“ myocardium. Circ Res 65: 526–530

    PubMed  CAS  Google Scholar 

  202. DeBoer LWV, Ingwall JS, Kloner RA, Braunwald E (1980) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77: 5471–5475

    Article  Google Scholar 

  203. Swain JL, Sabina RL, McHale PA, Greenfiled JC, Holmes EW (1982) Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 242: H818 - H826

    PubMed  CAS  Google Scholar 

  204. Hoffmeister HM, Mauser M, Schaper W (1985) Effect of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 80: 445–458

    Article  PubMed  CAS  Google Scholar 

  205. Ito BR, Tate H, Kobayashi M, Schaper W (1987) Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 61: 834–846

    PubMed  CAS  Google Scholar 

  206. Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T (1986) Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 7: 580–589

    Article  PubMed  CAS  Google Scholar 

  207. Schäfer S, Heusch G (1990) Recruitment of a time-dependent inotropic reserve by postextrasystolic potentiation in normal and reperfused myocardium. Basic Res Cardiol 85: 257–269

    Article  PubMed  Google Scholar 

  208. Ehring T, Heusch G (1991) Postextrasystolic potentiation does not distinguish ischaemic from stunned myocardium. Pfluegers Arch 418: 453–461

    Article  CAS  Google Scholar 

  209. Mercier JC, Lando U, Kanmatsuse K, Ninomiya K, Meerbaum S, Fishbein MC, Swan HJC, Ganz W (1982) Divergent effects of inotropic stimulation on the ischemic and severely depressed reperfused myocardium. Circulation 66: 397–400

    Article  PubMed  CAS  Google Scholar 

  210. Ellis SG, Wynne J, Braunwald E, Henschke CI, Sandor T, Kloner RA (1984) Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 107: 1319

    Article  Google Scholar 

  211. Bolli R, Zhu W-X, Myers ML, Hartley CJ, Roberts R (1985) Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent deterioration. Am J Cardiol 56: 964–968

    Article  PubMed  CAS  Google Scholar 

  212. Heusch G, Schäfer S, Kröger K (1988) Recruitment of inotropic reserve in „stunned“ myocardium by the cardiotonic agent AR-L 57. Basic Res Cardiol 83: 602–610

    Article  PubMed  CAS  Google Scholar 

  213. Schäfer S, Linder C, Heusch G (1990) Xamoterol recruits an inotropic reserve in the acutely failing, reperfused canine myocardium without detrimental effects on its subsequent recovery. Naunyn Schmiedebergs Arch Pharmacol 342: 206–213

    Article  PubMed  Google Scholar 

  214. Ambrosio G, Jacobus WE, Bergmann CA, Weisman HF, Becker LC (1987) Preserved high energy phosphate metabolic reserve in globally stunned hearts despite reduction of basal ATP content and contractility. J Mol Cell Cardiol 19: 953–964

    Article  PubMed  CAS  Google Scholar 

  215. Görge G, Papageorgiou I, Lerch R (1990) Epinephrine-stimulated contractile and metabolic reserve in postischemic rat myocardium. Basic Res Cardiol 85: 595–605

    Article  PubMed  Google Scholar 

  216. Dart AM, Schömig A, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat, pt B: Effect of sympathetic nerve stimulation. Circ Res 55: 702–706

    Google Scholar 

  217. Ciuffo AA, Ouyang P, Becker LC, Levin L, Weisfeldt ML (1985) Reduction of sympathetic inotropic response after ischemia in dogs. Contributor to stunned myocardium. J Clin Invest 75: 1504–1509

    Google Scholar 

  218. Heusch G, Frehen D, Kröger K, Schulz R, Thämer V (1988) Integrity of sympathetic neurotransmission in stunned myocardium. J Appl Cardiol 3: 259–272

    Google Scholar 

  219. Bolli R (1991) Oxygen-derived free radicals and myocardial reperfusion injury: an Overview. Cardiovasc Drugs Ther 5: 249–268

    Article  PubMed  Google Scholar 

  220. Hearse DJ (1991) Stunning: a radical review. Cardiovasc Drugs Ther 5: 853–876

    Article  PubMed  CAS  Google Scholar 

  221. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB (1988) Demonstration of free radical generation in „stunned“ myocardium of intact dogs with the use of the spin trap a-phenyl Ntert-butyl nitrone. J Clin Invest 82: 476–485

    Article  PubMed  CAS  Google Scholar 

  222. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial „stunning“ is a manifestation of reperfusion injury. Circ Res 65: 607–622

    Google Scholar 

  223. Bolli R, Patel BS, Zhu W-X, O’Neill PG, Hartley CJ, Charlat ML, Roberts R (1987) The iron chelator desferrioxamine attenuates postischemic ventricular dysfunction. Am J Physiol 253: H1372 - H1380

    PubMed  CAS  Google Scholar 

  224. Bolli R, Patel BS, Jeroudi MO, Li X-Y, Triana JF, Lai EK, McCay PB (1990) Iron-mediated reactions upon reperfusion contribute to myocardial „stunning“. Am J Physiol 259: H1901- H1911

    PubMed  CAS  Google Scholar 

  225. Bolli R, Zhu W-X, Hartley CJ, Michael LH, Repine JE, Hess ML, Kukreja RC, Roberts R (1987) Attenuation of dysfunction in the postischemic „stunned“ myocardium by dimethylthiourea. Circulation 76: 458–468

    Article  PubMed  CAS  Google Scholar 

  226. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R (1986) N-2-mercaptopropionylglycine improves recovery of myocardial function after reversible regional ischemia. J Am Coll Cardiol 8: 1161–1168

    Article  PubMed  CAS  Google Scholar 

  227. Gross GJ, Farber NE, Hardman HF, Warltier DC (1986) Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 250: H372 - H377

    PubMed  CAS  Google Scholar 

  228. Jeroudi MO, Triana FJ, Patel BS, Bolli R (1990) Effects of superoxide dismutase and catalase, given separately, on myocardial stunning. Am J Physiol 259: H889 - H901

    PubMed  CAS  Google Scholar 

  229. Triana JF, Li X-Y, Jamaluddin U, Thornby JI, Bolli R (1991) Postischemic myocardial „stunning“. Circ Res 69: 731–747

    PubMed  CAS  Google Scholar 

  230. Farber NE, Pieper GM, Thomas JP, Gross GJ (1988) Beneficial effects of iloprost in the stunned canine myocardium. Circ Res 62: 204–215

    PubMed  CAS  Google Scholar 

  231. Przyklenk K, Kloner RA (1991) Angiotensin converting enzyme inhibitors improve contractile function of stunned myocardium by different mechanisms of action. Am Heart J 121: 1319–1330

    Article  PubMed  CAS  Google Scholar 

  232. Lee H-C, Smith N, Mohabir R, Clusin WT (1987) Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 84: 7793–7797

    Article  PubMed  CAS  Google Scholar 

  233. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60: 700–707

    PubMed  CAS  Google Scholar 

  234. Tani M, Neely JR (1989) Role of intracellular Na’ in Ca’ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 65: 1045–1056

    PubMed  CAS  Google Scholar 

  235. Kitakaze M, Weisman HF, Marban E (1988) Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77: 685–695

    Article  PubMed  CAS  Google Scholar 

  236. Heusch G (1992) Myocardial stunning: a role for calcium antagonists during ischaemia? Cardiovasc Res 26: 14–19

    Article  PubMed  CAS  Google Scholar 

  237. van Amsterdam FT, Punt NC, Haas M, Zaagsma J (1990) Calcium antagonists show two modes of protection in ischemic heart failure. J Pharmacol Exp Ther 253: 277–283

    PubMed  Google Scholar 

  238. Dunlap ED, Matlib MA, Millard RW (1989) Protection of regional mechanics and mitochondrial oxidative phosphorylation by amlodipine in transiently ischemic myocardium. Am J Cardiol 64:84 I-93 I

    Google Scholar 

  239. Przyklenk K, Kloner RA (1988) Effect of verapamil on postischemic „stunned“ myocardium: importance of the timing of treatment. J Am Coll Cardiol 11: 614–623

    Article  PubMed  CAS  Google Scholar 

  240. Warltier DC, Gross GJ, Brooks HL, Preuss KC (1988) Improvement of postischemic, contractile function by the calcium channel blocking agent nitrendipine in conscious dogs. J Cardiovasc Pharmacol 12 (Suppl 4): S120–5124

    Article  PubMed  CAS  Google Scholar 

  241. Jeremy RW, Stahl L, Gillinov M, Litt M, Aversano TR, Becker LC (1989) Preservation of coronary flow reserve in stunned myocardium. Am J Physiol 256: H1303 - H1310

    PubMed  CAS  Google Scholar 

  242. Laxson DD, Homans DC, Dai X-Z, Sublett E, Bache RJ (1989) Oxygen consumption and coronary reactivity in postischemic myocardium. Circ Res 64: 9–20

    PubMed  CAS  Google Scholar 

  243. Bolli R, Triana JF, Jeroudi MO (1990) Prolonged impairment of coronary vasodilation after reversible ischemia. Circ Res 67: 332–343

    PubMed  CAS  Google Scholar 

  244. Stahl LD, Aversano TR, Becker LC (1986) Selective enhancement of function of stunned myocardium by increased flow. Circulation 74: 843–851

    Article  PubMed  CAS  Google Scholar 

  245. Schulz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs: evidence against the Gregg phenomenon. Circulation 83: 1390–1403

    PubMed  CAS  Google Scholar 

  246. Schulz R, Janssen F, Guth BD, Heusch G (1991) Effect of coronary hyperperfusion on regional myocardial function and oxygen consumption of stunned myocardium in pigs. Basic Res Cardiol 86: 534–543

    Article  PubMed  CAS  Google Scholar 

  247. Lamping KA, Gross GJ (1985) Improved recovery of myocardial segment function following a short coronary occlusion in dogs by nicorandil, a potential new antianginal agent, and nifedipine. J Cardiovasc Pharmacol 7: 158–166

    Article  PubMed  CAS  Google Scholar 

  248. Przyklenk K, Ghafari GB, Eitzman DT, Kloner RA (1989) Nifedipine administered after reperfusion ablates systolic contractile dysfunction of postischemic „stunned“ myocardium. J Am Coll Cardiol 13: 1176–1183

    Article  PubMed  CAS  Google Scholar 

  249. Taylor AL, Golino P, Eckels R, Pastor P, Buja M, Willerson JT (1990) Differential enhancement of postischemic segmental systolic thickening by diltiazem. J Am Coll Cardiol 15: 737–747

    Article  PubMed  CAS  Google Scholar 

  250. Ehring T, Böhm M, Heusch G (1992) The calcium antagonist nisoldipine improves the functional recovery of reperfused myocardium only when given before ischemia. J Cardiovasc Pharmacol 20: 63–74

    PubMed  CAS  Google Scholar 

  251. Du Toit EF, Owen P, Opie LH (1990) Attenuated reperfusion stunning with a calcium channel antagonist or internal calcium blocker in the isolated perfused rat heart. J Mol Cell Cardiol 22 (Suppl III): S 58 (Abstr)

    Google Scholar 

  252. Guarnieri T (1989) Direct measurement of [Ca2+]i in early and late reperfused myocardium. Circulation 80 (Suppl II): II-241 (Abstr)

    Google Scholar 

  253. Janero DR, Burghardt B (1989) Antiperoxidant effects of dihydropyridine calcium antagonists. Biochem Pharmacol 38: 4344–4348

    Article  PubMed  CAS  Google Scholar 

  254. Koller PT, Bergmann SR (1989) Reduction of lipid peroxidation in reperfused isolated rabbit hearts by diltiazem. Circ Res 65: 838–846

    PubMed  CAS  Google Scholar 

  255. Mak IT, Weglicki WB (1990) Comparative antioxidant activities of propranolol, nifedipine, verapamil, and dilziazem against sarcolemmal membrane lipid peroxidation. Circ Res 66: 1449–1452

    PubMed  CAS  Google Scholar 

  256. Du Toit EF, Opie LH (1992) Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at the onset of reperfusion. Circ Res 70: 960–967

    PubMed  Google Scholar 

  257. Opie L (1992) Myocardial stunning: a role for calcium antagonists during reperfusion. Cardiovasc Res 26: 19–24

    Google Scholar 

  258. Nayler WG (1991) Second generation of calcium antagonists. Springer, Berlin Heidelberg New York, pp 1–226

    Google Scholar 

  259. Przyklenk K, Kloner RA (1992) Letter to the editor: Calcium antagonists and the stunned myocardium: a role during ischemia? A role during reperfusion? Cardiovasc Res 26: 82–84

    Article  PubMed  CAS  Google Scholar 

  260. Murry CE, Jennings RB, Reimer KA (1991) New insights into potential mechanisms of ischemic preconditioning. Circulation 84: 442–445

    PubMed  CAS  Google Scholar 

  261. Murry CE, Richard VJ, Reimer KA, Jennings RB (1990) Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66: 913–931

    PubMed  CAS  Google Scholar 

  262. Ovize M, Kloner RA, Hale SL, Przyklenk K (1992) Coronary cyclic flow variations „precondition“ ischemic myocardium. Circulation 85: 779–789

    PubMed  CAS  Google Scholar 

  263. Li GC, Vasquez JA, Gallagher KP, Lucchesi BR (1990) Myocardial protection with preconditioning. Circulation 82: 609–619

    Article  PubMed  CAS  Google Scholar 

  264. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70: 223–233

    PubMed  CAS  Google Scholar 

  265. Murry CE, Richard VJ, Jennings RB, Reimer KA (1991) Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol 260: H796 - H804

    PubMed  CAS  Google Scholar 

  266. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic „Preconditioning“ protects remote virigin myocardium from subsequent sustained coronary occlusion. Circulation 87: 893–899

    PubMed  CAS  Google Scholar 

  267. Kida M, Fujiwara H, Ishida M, Kawai C, Ohura M, Miura I, Yabuuchi Y (1991) Ischemic preconditioning preserves creatine phosphate and intracellular pH. Circulation 84: 2495–2503

    PubMed  CAS  Google Scholar 

  268. Miura T, Goto M, Urabe K, Endoh A, Shimamoto K, Iimura O (1991) Does myocardial stunning contribute to infarct size limitation by ischemic preconditioning? Circulation 84: 2504–2512

    PubMed  CAS  Google Scholar 

  269. Rohmann S, Schott RJ, Harting J, Schaper W (1991) Ischemic preconditioning is not a function of stunned myocardium. J Mol Cell Cardiol 23 (Suppl V ): 71 (Abstr)

    Article  Google Scholar 

  270. Ovize M, Przyklenk K, Hale SL, Kloner RA (1992) Preconditioning does not attenuate myocardial stunning. Circulation 85: 2247–2254

    PubMed  CAS  Google Scholar 

  271. Iwamoto T, Miura T, Adachi T, Noto T, Ogawa T, Tsuchida A, Iimura O (1991) Myocardial infarct size-limiting effect of ischemic preconditioning was not attenuated by oxygen free-radical scavengers in the rabbit. Circulation 83: 1015–1022

    PubMed  CAS  Google Scholar 

  272. Turrens JF, Thornton J, Barnard ML, Snyder S, Liu G, Downey JM (1992) Protection from reperfusion injury by preconditioning hearts does not involve increase antioxidant defenses. Am J Physiol 262: H585 - H589

    PubMed  CAS  Google Scholar 

  273. Thornton J, Striplin S, Liu GS, Swafford A, Stanley AWH, van Winkle DM, Downey JM (1990) Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am J Physiol 259: H1822 - H1825

    PubMed  CAS  Google Scholar 

  274. Li Y, Kloner RA (1992) Cardioprotective effects of ischaemic preconditioning are not mediated by prostanoids. Cardiovasc Res 26: 226–231

    Article  PubMed  CAS  Google Scholar 

  275. Mullane K (1992) Myocardial preconditioning. Part of the adenosine revival. Circulation 85: 845–847

    PubMed  CAS  Google Scholar 

  276. Nichols CG, Lederer WJ (1991) Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 261: H1675 - H1686

    PubMed  CAS  Google Scholar 

  277. Liu GS, Thornton J, van Winkle DM, Stanley AWH, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circulation 84: 350–356

    PubMed  CAS  Google Scholar 

  278. Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with Al-selective adenosine analogues protects the heart against infarction. Circulation 85: 650–665

    Google Scholar 

  279. Tsuchida A, Miura T, Miki T, Shimamoto K, Iimura O (1992) Role of adenosine receptor activation in myocardial infarct size limitation by ischemic preconditioning. Cardiovasc Res 26: 456–461

    Article  PubMed  CAS  Google Scholar 

  280. van Wagoner DR (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72: 973–983

    PubMed  Google Scholar 

  281. Shiki K, Hearse DJ (1987) Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. Am J Physiol 253: H1470 - H1476

    PubMed  CAS  Google Scholar 

  282. Hagar JM, Hale SL, Kloner RA (1991) Effect of preconditioning ischemia on reperfusion arrhythmias after coronary artery occlusion and reperfusion in the rat. Circ Res 68: 61–68

    PubMed  CAS  Google Scholar 

  283. Li Y, Whittaker P, Kloner RA (1992) The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrythmia. Am Heart J 123: 346–353

    Article  PubMed  CAS  Google Scholar 

  284. Miyazaki T, Zipes DP (1989) Protection against autonomic denervation following acute myocardial infarction by preconditioning ischemia. Circ Res 64: 437–448

    PubMed  CAS  Google Scholar 

  285. Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW Jr, Herrmann HC, Laskey WK (1990) Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 82: 2044–2051

    Google Scholar 

  286. Osakada G, Kumada T, Gallagher KP, Kemper WS, Ross J Jr (1981) Reduction of exercise-induced ischemic regional myocardial dysfunction by verapamil in conscious dogs. Am Heart J 101: 707–712

    Article  PubMed  CAS  Google Scholar 

  287. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323: 1593–1600

    Article  PubMed  CAS  Google Scholar 

  288. Schelbert HR (1991) Positron emission tomography for the assessment of myocardial viability. Circulation 84 (Suppl I): I-122-I-131

    Google Scholar 

  289. Piérard LA, Landsheere CM de, Berthe C, Rigo P, Kulbertus HE (1990) Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 15: 1021–1031

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumgart, D., Heusch, G. (1995). Pathophysiologie der Myokardischämie. In: Ahnefeld, F.W., Dick, W., Erdmann, E. (eds) Herz- und kreislaufwirksame Medikamente in Anästhesie, Intensiv- und Notfallmedizin. Klinische Anästhesiologie und Intensivtherapie, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78777-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78777-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57634-1

  • Online ISBN: 978-3-642-78777-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics