Lymphocyte-Melanoma Interaction: Role of Surface Molecules

  • J. C. Becker
  • E. B. Bröcker
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 139)


The coexistence of tumor-speciic immunity with a progressing tumor is observed in most experimental systems and remains one of the major paradoxes of tumor immunology. Expression of several surface molecules on melanoma cells, e.g., intercellular adhesion molecule 1 (ICAM-1) or major histocompatibility complex (MHC) class II, has been associated with an aggressive tumor growth and an reduced host antitumor response.

HLA class I expression is also frequently altered in melanoma compared to melanocytes. Given the central role of these molecules in the restriction of T cell recognition, regulation of tumor HLA class I expression might also be a strategy for the evasion of immune surveillance by the malignant cells.

The fact that it is now possible to clone antigen-specific T cells from tumor patients, as well as the relevant autologous tumor cell lines, enabled us to establish a model system to investigate possible tumor escape mechanisms from immunosurveillance.

Using this system, we were able to demonstrate that purified soluble ICAM-1 or 12-fold-concentrated cell-free melanoma supernatants, containing shed ICAM-1, were able to inhibit conjugate formation between T cell clones and the autologous melanoma cells as efficiently as monoclonal antibodies against CD11a, Soluble ICAM-1 also abrogated the MHC-restricted killing of the melanoma by T cell clones.

We further observed that a number of CD4+ T cell clones and melanoma cell lines established from the same tumors form conjugates with each other, leading to an increase of [Ca2+]i in the T cell clone; however, this interaction failed to induce interleukin-2 production or proliferation of the T cell clone. Furthermore, this interaction rendered the T cell clone unresponsive to subsequent stimulation. All these effects were MHC class II restricted. Therefore, the melanoma was capable of delivering antigen-specific signals to the T cell clone, but did not deliver the costimulatory signals, e.g., a dere hingegen führen den Unterschied auf die pragmatische Haltung der Richter zurück, die im State Farm Fall den „bad smell” der zu überprüfenden Entscheidung wahrgenommen hätten, während sie im. Baltimore Gas Fall die intensive und redliche Erörterung der aufgeworfenen Frage honoriert hätten183.


Major Histocompatibility Complex Melanoma Cell Major Histocompatibility Complex Class Cell Clone Melanoma Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altomonte M, Colizzi F, Esposito G, Maio M (1992) Circulating ICAM-1 as a marker of disease progression in cutaneous melanoma. N Engl J Med 327:959PubMedGoogle Scholar
  2. Becker JC, Dummer R, Hartmann AA, Burg G, Schmidt RE (1991) Shedding of ICAM-1 from human melanoma cell lines induced by IFNγ and TNFα: functional consequences on cell mediated cytotoxicity. J Immunol 147:4398–4001PubMedGoogle Scholar
  3. Becker JC, Dummer R, Schwinn A, Hartmann AA, Burg G (1992) Circulating ICAM-1 in melanoma patients: induction by interleukin-2 therapy. J Immunotherapy 12:147–151CrossRefGoogle Scholar
  4. Becker JC, Schwinn A, Dummer R, Burg G, Bröcker EB (1993a) Lesion-specific activation of cloned tumor infiltrating lymphocytes by autologous tumor cells: induction of proliferation and cytokine production. J Invest Dermatol 101:15–21PubMedCrossRefGoogle Scholar
  5. Becker JC, Schwinn A, Dummer R, Burg G, Bröcker EB (1993b) Tumor infiltrating lymphocytes in primary melanoma: functional consequnces of differential IL-2 receptor expression. Clin Exp Immunol 91:121–125PubMedCrossRefGoogle Scholar
  6. Becker JC, Termeer C, Schmidt RE, Bröcker EB (1993c) Soluble intercellular adhesion molecule 1 inhibits MHC-restricted T cell/tumor interaction. J Immunol 151:7224–7232PubMedGoogle Scholar
  7. Becker JC, Brabletz T, Czerny C, Termeer C, Bröcker EB (1993d) Tumor escape mechanisms from immunosurveillance: induction of unresponsiveness in a specific MHC-restricted CD4+ human T cell clone by the autologous MHC class II+ melanoma. Int Immunol 5:1501–1508PubMedCrossRefGoogle Scholar
  8. Bröcker EB, Suter L, Sorg C (1984) HLA-DR antigen expression in primary melanomas of the skin. J Invest Dermatol 82:244–247PubMedCrossRefGoogle Scholar
  9. Bröcker EB, Zwadlo G, Holzmann B, Macher E, Sorg C (1988) Inflammatory cell infiltrates in human melanoma at different stages of tumor progression. Int J Cancer 41:562–567PubMedCrossRefGoogle Scholar
  10. Carrel S, Johnson JP (1993) Immunologic recognition of malignant melanoma by autologous T lymphocytes. Curr Opin Oncol 5:383–389PubMedCrossRefGoogle Scholar
  11. Carrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F, Stern PL (1993) Natural history of HLA expression during tumor development. Immunol Today 14: 491–499CrossRefGoogle Scholar
  12. Chen L, Linsley PS, Hellström KE (1993) Costimulation of T cells for tumor immunity. Immunol Today 14:483–486PubMedCrossRefGoogle Scholar
  13. D’Urso CM, Wang Z, Cao Y, Tatake R, Zeff RA, Ferrone S (1991) Lack of HLA class I expression by cultured melanoma cells FO-1 due to a defect in beta2-mircoglobulin gene expression. J Invest Dermatol 87:284–292Google Scholar
  14. Gearing AJH, Newman W (1993) Circulating adhesion molecules in disease. Immunol Today 14:506–512PubMedCrossRefGoogle Scholar
  15. Ghosh P, Tan TH, Rice NR, Sica A, Young HA (1993) The interleukin 2 CD28-responsive complex contains at least three members of the NF kB family: c-Rel, p50, and p65. Proc Nate Acad Sci USA 90:1696–1700CrossRefGoogle Scholar
  16. Greve JM, Davis G, Meyer AM, Forte CM, Yost SC, Marlor CW, Kamarck ME, McClelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56:839PubMedCrossRefGoogle Scholar
  17. Hart IR, Saini A (1992) Biology of tumor metastasis. Lancet 339:1453–1457PubMedCrossRefGoogle Scholar
  18. Hogg N, Bates PA, Harvey J (1991) Structure and function of intercellular adhesion molecule 1. In: Hogg N (ed) Integrins and ICAM-1 in immune responses. Chem Immunol 50:98–121CrossRefGoogle Scholar
  19. Holzmann B, Bröcker EB, Lehmann JM, Ruiter DJ, Sorg C, Riethmüller G, Johnson JP (1987) Tumor progression in human malignant melanoma: five stages defined by their antigenic phenotypes. Int J Cancer 39:466–471PubMedCrossRefGoogle Scholar
  20. Johnson JP, Stade BG, Holzmann B, Schwäble R, Riethmüller G (1989) De novo expression of ICAM-1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci USA 86:641–644PubMedCrossRefGoogle Scholar
  21. Kageshita T, Nakamura T, Yamada M, Kuriya N, Arao T (1991) Differential expression of melanoma asscociated antigens in acral lentiginous melanoma and in nodular melanoma lesions. Cancer Res 51:1726–1732PubMedGoogle Scholar
  22. Kang SM, Beverly B, Tran SC, Brorson K, Schwartz RH, Lenardo M (1992) Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257:1134–1138PubMedCrossRefGoogle Scholar
  23. Lanzavecchia A (1993) Identifying strategies for immune intervention. Science 260:937–944PubMedCrossRefGoogle Scholar
  24. Larson RS, Springer TA (1990) Structure and function of leukocytes integrins. Immunol Rev 114:181–204PubMedCrossRefGoogle Scholar
  25. Lejeune F, Bauer J, Leyvraz S, Lienard D (1993) Disseminated melanoma, preclinical therapeutic studies, clinical trials, and patient treatment. Curr Opin Oncol 5:390–396PubMedCrossRefGoogle Scholar
  26. Meyskens FL, Kopecky K, Samson M, Hersch E, McDonald J, Jaffe H, Crowley J, Coltman C (1990) Recombinant human interferon gamma: adverse effect in high risk stage I and II cutaneous melanoma. J Natl Cancer Inst 82: 1071PubMedGoogle Scholar
  27. Müller DL (1989) Do tolerant T cells exist? Nature 339:513–514CrossRefGoogle Scholar
  28. Natali P, Nicotra MR, Cavaliere R, Bigotti A, Romano G, Temponi M, Ferrone S (1990) Differential expression of ICAM-1 in primary and metastatic lesions. Cancer Res 50:1271–1278PubMedGoogle Scholar
  29. Norton SD, Zuckerman L, Urdahl KB, Shefner L, Miller J, Jenkins MK (1992) The CD28 ligand, B7, enhances IL-2 production by providing a costimulatory signal to T cells. J Immunol 149:1556–1561PubMedGoogle Scholar
  30. Ockenhouse CF, Betageri R, Springer TA, Staunton DE (1992) Plasmodium falciparum-infected erythorcytes bind ICAM-1 at a site distinct from LFA-1 Mac-1 and human rhinovirus. Cell 68:63PubMedCrossRefGoogle Scholar
  31. Peltenburg LCT, Dee R, Schrier PI (1993) Downregulation of HLA class I expression by c-myc in human melanoma is independent of enhancer A. Nucleic Acid res 21:1179–1185PubMedCrossRefGoogle Scholar
  32. Pullman WE, Bodmer WF (1992) Cloning and characterization of a gene that regulates cell adhesion. Nature 356:529PubMedCrossRefGoogle Scholar
  33. Restifo NP, Spiess PJ, Karp SE, Mule JJ, Rosenberg SA (1992) A non immunogenic sarcoma treatment with the cDNA for interferon gamma elicts CD8+ T cells against the wildtype tumor: correlation with antigen presentation capability. J Exp Med 175:1423–1430PubMedCrossRefGoogle Scholar
  34. Restifo NP, Esquivel F, Kawakami Y, Yewdell JW, Mule JJ, Rosenberg SA, Bennink JR (1993) Identification of human cancers deficient in antigen processing. J Exp Med 177:265–272PubMedCrossRefGoogle Scholar
  35. Ruiter DJ, Mattijissen V, Bröcker EB, Ferrone S (1991) MHC antigens in human melanoma. Semin Cancer Biol 2:25–45Google Scholar
  36. Schrier PI, Peltenberg LTC (1993) Relationship between myc oncogene activation and MHC class I expression. Adv Res 60:181–245Google Scholar
  37. Schwartz RH (1990) A cell culture modell for T lymphocyte clonal anergy. Science 248:1349–1356PubMedCrossRefGoogle Scholar
  38. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434PubMedCrossRefGoogle Scholar
  39. Topalian S, Solomon D, Rosenberg SA (1989) Tumor specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 142:3714–3724PubMedGoogle Scholar
  40. Townsend A (1992) A new presentation pathway? Nature 356:386–387PubMedCrossRefGoogle Scholar
  41. Townsend SE Allison JP (1993) Tumor rejection after direct constimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–370PubMedCrossRefGoogle Scholar
  42. Van den Eynde B, Hainaut P, Herin M, Knuth A, Lemoine C, Weynants P, van der Bruggen P, Fauchet R, Boon T (1989) Presence on a human melanoma of multiple antigens recognized by autologous CTL. Int J Cancer 44:634–640PubMedCrossRefGoogle Scholar
  43. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, de Plaen E, van der Eynde B, Boon T (1991) A gene encoding an antigen recognized by CTL on a human melanoma. Science 254:1643–1647PubMedCrossRefGoogle Scholar
  44. van Duinen SG, Ruiter DJ, Broecker EB, van der Velde EA, Sorg C, Welvaart K, Ferrone S (1988) Level of HLA antigen in locoreginal metastases in clinical course of the disease in patients with melanoma. Cancer Res 48:1019–1025PubMedGoogle Scholar
  45. Versteeg R, Kruse-Wolters K, Plomp AC, van Leuwen A, Stam NJ, Ploegh HL, Ruiter DJ, Schrier PI (1989) Suppression of class I human histocompatibility leukocyte antigen by c-myc is locus specific. J Exp Med 170:621–635PubMedCrossRefGoogle Scholar
  46. von Stamm U, Bröcker EB, von Depka Prondzinski M, Ruiter DJ, Rümke P, Broding C, Carrel S, Lejeune FJ (1993) Effects of systemic IFN alpha on the antigenic phenotype of melanoma metastases. EORTC melanoma cooperative study 18852. Melanoma Res 3:173–180CrossRefGoogle Scholar
  47. Wang Z, Cao Y, Albino AP, Zeff RA, Houghton A, Ferrone S (1993) Lack of HLA class I antigen expression by melanoma cells SK-MEL-33 caused by a reading frameshift in beta2-microglobulin messenger RNA. J Clin Invest 91:684–692PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1995

Authors and Affiliations

  • J. C. Becker
    • 1
  • E. B. Bröcker
    • 1
  1. 1.Department of DermatologyUniversity of WürzburgWürzburgGermany

Personalised recommendations