Skip to main content

Intermediate filaments: regulation of gene expression and assembly

  • Chapter
EJB Reviews 1993

Part of the book series: EJB Reviews ((EJB REVIEWS,volume 1993))

  • 133 Accesses

Abstract

The cytoskeleton of eukaryotic cells consists of three major fibrillar networks: microfilaments (25 nm), intermediate filaments (10 nm) and microtubules (5 nm) which can be distinguished on the basis of ultrastructural and immunological properties. Microfilaments and microtubules are involved in a number of vital processes such as cell division, protoplasmic streaming, locomotion, anchorage and cellular polarity. The function of intermediate filaments (IF), however, is not fully understood yet. Only recently has progress been reported on the elucidation of some functional aspects of IF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AP-1:

activator protein 1

AP2:

transcription factor AP2

CNS:

central nervous system

GFAP:

glial fibrillary acidic protein

HSV-1:

human sarcoma virus 1

LTKTK :

mouse L cells

MCF-7:

mammary carcinoma cell line MCF-7

NF:

neurofilament

NF1:

transcription factor NF1

NGF:

nerve growth factor

PC12:

rat pheochromocytoma cell line PC12

PNS:

peripheral nervous system

SV40:

simian virus 40

TK :

thymidine-kinase-deficient

TPA:

12-O-tetradecanoylphorbol 13-acetate, VP16, HSV-1 viral trans-activator protein VP16

References

  • Abe, M., Oshima, R.G., (1990) A single human keratin 18 gene is expressed in diverse epithelial cells of transgenic mice, J. Cell Biol. 111, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  • Aebi, U., Haner, M., Troncosco, J., Eichner, R. & Engel, A. (1988) Unifying principles in intermediate filament (IF) structure & assembly, Protoplasma 145,73–81.

    Article  Google Scholar 

  • Albers, K. & Fuchs, E. (1992) The molecular biology of intermediate filament proteins, Int. Rev. Cytol. 134, 243–279.

    Article  PubMed  CAS  Google Scholar 

  • Alldridge, L.C., O’Farrell, M.K. & Dealtry, G.B. (1989) Interferon ß increases expression of vimentin at the messenger RNA & protein levels in differentiated embryonal carcinoma (PSMB) cells, Exp. Cell Res. 185,387–393.

    Article  PubMed  CAS  Google Scholar 

  • Bader, B.L., Jahn, L. & Franke, W.W. (1988) Low level expression of cytokeratins 8, 18, & 19 in vascular smooth muscle cells of human umbilical cord & in cultured cells derived therefrom, with an analysis of the chromosomal locus containing the cytokeratin 19 gene, Eur J. Cell Biol. 47, 300–319.

    PubMed  CAS  Google Scholar 

  • Bader, B.L. & Franke, W.W. (1990) Cell type-specific & efficient synthesis of human cytokeratin 19 in transgenic mice, Differentiation 45, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Bader, B.L., Magin, T.M., Freudenman, M., Stumpp, S. & Franke, W.W. (1991) Intermediate filaments formed de novo from tailless cytokeratins in the cytoplasm & in the nucleus, J. Cell Biol. 115, 1293–1307.

    Article  PubMed  CAS  Google Scholar 

  • Bailleul, B., Surani, M.A., White, S., Barton, S.C., Brown, K., Blessing, M., Jorcano, J. & Balmain, A. (1990) Skin hyperkeratosis & papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter, Cell 62, 697–708.

    Article  PubMed  CAS  Google Scholar 

  • Balcarek, J.M. & Cowan, N.J. (1985) Structure of the mouse glial acidic protein gene: implication for the evolution of the intermediate filament multigene family, Nucleic Acids Res. 13,5527–5543.

    Article  PubMed  CAS  Google Scholar 

  • Baribault, H. & Oshima, R.G. (1991) Polarized & functional epithelia can form after the targeted inactivation of both mouse keratin-8 alleles, J. Cell Biol. 115, 1675–1684.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G.S., Fellini, S.A., Toyama, Y. & Holtzer, H. (1979) Redistribution of intermediate filament subunits during skeletal myogenesis & maturation in vitro, J. Cell Biol. 82, 577–584.

    Article  PubMed  CAS  Google Scholar 

  • Besnard, F., Brenner, M., Nakatani, Y., Chao, R., Purohit, H.J. & Freese, E. (1991) Multiple interacting sites regulate astrocytespecific transcription of the gene for glial fibrillary acidic protein, J. Biol. Chem. 266,18877–18883.

    PubMed  CAS  Google Scholar 

  • Bignami, A., Eng, L.F., Dahl, D. & Uyeda, C.T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res. 43, 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Björklund, H., Dahl, D. & Seiger, A. (1984) Neurofilament & glial fibrillary acid protein-related immunoreactivity in rodent enteric nervous system, Neuroscience 12,277–287.

    Article  PubMed  Google Scholar 

  • Blau, H.M., Chiu, C.P. & Webster, C. (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons, Cell 32, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  • Blessing, M., Jorcano, J.L. & Franke, W.W. (1989) Enhancer elements directing cell-type-specific expression of cytokeratin genes & changes of the epithelial cytoskeléton by transfections of hybrid cytokeratin genes, EMBO J. 8, 117–126.

    PubMed  CAS  Google Scholar 

  • Bloemendal, H. & Pieper, F.R. (1989) Intermediate filaments: known structure, unknown function, Biochim. Biophys. Acta 1007, 245–253.

    PubMed  CAS  Google Scholar 

  • Bloemendal, H. (1991) Disorganization of membranes & abnormal intermediate filament assembly lead to cataract, Invest. Ophthalmol. Visual Sci. 32, 445–455.

    CAS  Google Scholar 

  • Blumenberg, M. (1988) Concerted gene duplication in the two keratin gene families, J. Mol. Evol. 27, 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Blumenberg, M. (1989) Evolution of homologous domains of cytoplasmic intermediate filament proteins & larcins, Mol. Biol. Evol. 6, 53–65.

    PubMed  CAS  Google Scholar 

  • Blumenberg, M., Connolly, D. M., & Freedberg, I.M. (1992) Regulation of keratin gene expression: The role of the nuclear receptors for retinoic acid, thyroid hormone, & vitamin D3, J. Invest. Dermatol. 98, 42S–49S.

    Article  PubMed  CAS  Google Scholar 

  • Bologa, L., Cole, R., Chiappelli, F., Saneto, R.P. & de Vellis, J. (1988) Expression of glial fibrillary acidic protein by differentiated astrocytes is regulated by serum antagonistic factors, Brain Res. 457, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Bonifas, J.M., Rothman, A.L. & Epstein, E.H. (1991) Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities, Science 254, 1202–1205.

    Article  PubMed  CAS  Google Scholar 

  • Bowden, P.E., Stark, H.J., Breitkreutz, D. & Fusenig, N.E. (1987) Expression & modification of keratins during terminal differentiation of mammalian epidermis, Curr. Top. Dev. Biol. 22,3568.

    Google Scholar 

  • Braun, T., Bober, E., Buschhausen-Denker, G., Kotz, S., Grzeschik, K. & Arnold, A.H. (1989) Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products, EMBO J. 8, 3617–3625.

    PubMed  CAS  Google Scholar 

  • Brûlet, P., Babinet, C., Kemler, R. & Jacob, F. (1980) Monoclonal antibodies against trophoectoderm-specific markers during mouse blastocyst formation, Proc. Natl Acad. Sci. USA 85, 9679–9682.

    Google Scholar 

  • Buskin, J.N. & Hauschka, S.D. (1989) Identification of a myocytespecific nuclear factor which binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene, Mol. Cell. Biol. 9,2627–2640.

    PubMed  CAS  Google Scholar 

  • Byrne, G.W. & Ruddle, F.H. (1989) Multiplex gene regulation: a two tiered approach to transgene regulation in transgenic mice, Proc. Natl Acad. Sci. USA 86, 5473–5477.

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki, Y.G., Ngai, J., Flytzanis, C.N. & Lazarides, E. (1983) Tissue-specific expression of two mRNA species transcribed from a single vimentin gene, Cell 35, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki, Y.G., Ngai, J. & Lazarides, E. (1984) Characterization & regulation in the expression of a gene coding for the intermediate filament protein desmin, Proc. Natl Acad. Sci. USA 81,6909–6913.

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki, Y., Smith, S. & Heath, J.P. (1989) Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation, J. Cell Biol. 109, 1653–1664.

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Fonseca, M. & David-Ferreira, J.F. (1990) Interactions of intermediate filaments with cell structures, Electron Microsc. Rev. 3, 115–141.

    Article  PubMed  CAS  Google Scholar 

  • Carter, R.L., McCarthy, K.P., Machin, L.G., Jameson, C.F., Philp, E.R. & Pinkerton, C.R. (1989) Expression of desmin & myoglobin in rhabdomyosarcomas & in developing skeletal muscle, Histopathology 15,585–595.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J., Syder, A.J., Yu, Q.-C., Letai, A., Palier, A.S. & Fuchs, E. (1992) The genetic basis of epidermolytic hyperkeratosis a disorder of differentiation-specific epidermal keratin genes, Cell 70,811–819.

    Article  PubMed  CAS  Google Scholar 

  • Chin, S.S.M., Macioce, P. & Liem, R.K.H. (1991) Effects of truncated neurofilament-proteins on the endogenous intermediate filaments in transfected fibroblasts, J. Cell Sci. 99,335–350.

    PubMed  CAS  Google Scholar 

  • Ching, G.Y. & Liem, R.K.H. (1991) Structure of the gene for the neuronal intermediate filament protein a-internexin & functional analysis of its promoter, J. Biol. Chem. 266,19459–19468.

    PubMed  CAS  Google Scholar 

  • Chipev, C.C., Korge, B.P., Markova, N., Bale, S.J., Digiovanna, J.J., Compton, J.G. & Steinert, P.M. (1992) A leucine proline mutation in the H1 subdomain of keratin-1 causes epidermolytic hyperkeratosis, Cell 70, 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J., Costa, M.L., Mermelstein, C.S., Chagas, C. Holtzer, S., & Holtzer, H. (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, & retinal pigmented epithelial cells into striated mononucleated myoblasts & multinucleated myotubesProc. Natl Acad. Sci. USA 87,7988–7992.

    Article  PubMed  CAS  Google Scholar 

  • Cochard, R. & Paulin, D. (1984) Initial expression of neurofilaments & vimentin in the central & peripheral nervous system of the mouse embryo in vivo,J. Neurosci. 4, 2080–2094.

    PubMed  CAS  Google Scholar 

  • Coggi, G., Dell’orto, P., Braidotti, P., Coggi, A. & Viale, G. (1989) Coexpression of intermediate filaments in normal & neoplastic human tissues: a reappraisal, Ultrastruct. Pathol. 3, 501–514.

    Article  Google Scholar 

  • Collins, C., Moll, R., Kubicka, S., Ouhayoun, J.-P. & Franke, W.W. (1992) Characterization of human cytokeratin 2, an epidermal cytoskeletal protein synthesized late during differentiation, Exp. Cell Res. 202, 132–141.

    Article  Google Scholar 

  • Connell, N.D. & Rheinwald, J.G. (1983) Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin & increase in vimentin during rapid growth in culture, Cell 34, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Conway, J.F. & Parry, D.A.D. (1988) Intermediate filament structure. 3. Analyses of sequence homologies, Int. J. Biol. Macromol. 10,79–89.

    Article  CAS  Google Scholar 

  • Coulombe, P.A. & Fuchs, E. (1990) Elucidating the early stages of keratin filament assembly, J. Cell Biol. 111, 153–169.

    Article  PubMed  CAS  Google Scholar 

  • Coulombe, P.A., Hutton, M.E., Letai, A., Hebert, A., Paller, A.S. & Fuchs, E. (1991a) Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic & functional analyses, Cell 66,1301–1311.

    Article  CAS  Google Scholar 

  • Coulombe, P.A., Hutton, M.E., Vassar, R. & Fuchs, E. (1991b) A function for keratins & a common thread among different types of epidermolysis bullosa simplex diseases, J. Cell Biol. 115,1661–1674.

    Article  CAS  Google Scholar 

  • Cserjesi, P. & Olson, E.N. (1991) Myogenin induces the myocytespecific enhancer-binding factor MEF-2 independently of other muscle-specific gene products, Mol. Cell. Biol. 11, 4854–4862.

    PubMed  CAS  Google Scholar 

  • Dahl, D., Rueger, D.C., Bignanú, A., Weber, K. & Osborn, M. (1981) Vimentin the 57000 daltons protein of fibroblast filaments is the major cytoskeletal component in immature glia, Eur. J. Cell Biol. 24,191–196.

    PubMed  CAS  Google Scholar 

  • Dellagi, K., Vainchenker, W., Vinci, G., Paulin, D. & Brouet, J.C. (1983) Alteration of vimentin intermediate filament expression during differentiation of human hemopoietic cells, EMBO J. 2, 1509–1514.

    PubMed  CAS  Google Scholar 

  • Desmarais, D., Filion, M., Lapointe, L. & Royal, A. (1992) Cell-specific transcription of the peripherin gene in neuronal cell lines involves a cis-acting element surrounding the TATA box, EMBO J. 11, 2971–2980.

    PubMed  CAS  Google Scholar 

  • Dessev, G.N., Iovcheva-Dessev, C. & Goldman, R.D. (1990) Lamin dimersJ. Biol. Chem. 265,12636–12641.

    PubMed  CAS  Google Scholar 

  • Dodemont, H.J., Soriano, P., Quax, W.J., Ramaekers, F., Lenstra, J.A., Groenen, M.A., Bernardi, G. & Bloemendal, H. (1982) The genes coding for the cytoskeletal proteins actin & vimentin in warm-blooded vertebrates, EMBO J. 1, 167–171.

    PubMed  CAS  Google Scholar 

  • Dodemont, H., Riemer, D. & Weber, K. (1990) Structure of an invertebrate gene encoding cytoplasmic intermediate filament (IF) proteins: implications for the origin & the diversification of IF proteins, EMBO J. 9, 4083–4094.

    PubMed  CAS  Google Scholar 

  • Döring, V. & Stick, R. (1990) Gene structure of nuclear lamin LIII of Xenopus laevis; a model for the evolution of IF proteins from a lamin-like ancestor, EMBO J. 9,4073–4081.

    PubMed  Google Scholar 

  • Dunia, I., Pieper, F., Manenti, S., van der Kemp, A., Devilliers, G., Benedetti, E.L. & Bloemendal, H. (1990) Plasma membrane cytoskeletal damage in eye lenses of transgenic mice expressing desmin, Eur. J. Cell Biol. 53, 59–74.

    PubMed  CAS  Google Scholar 

  • Duprey, P., Morello, D., Vasseur, M., Babinet, C., Condamine, H., Brûlet, P. & Jacob, F. (1985) Expression of the cytokeratin endo A gene during early mouse embryogenesis, Proc. Natl Acad. Sci. USA 82, 8538–8539.

    Google Scholar 

  • Eckelt, A., Hellmann, H. & Franke, W.W. (1992) Assembly of a tailless mutant of the intermediate filament protein vimentin in vitro & in vivo, Eur. J. Cell Biol. 58, 319–330.

    PubMed  CAS  Google Scholar 

  • Eckert, R.L. & Green, H. (1984) Cloning of cDNAs specifying vitamin A-responsive keratins, Proc. Natl Acad. Sci. USA 81, 4321–4325.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, R.L. (1989) Structure, function & differentiation of the keratinocyte, Phys. Rev. 69, 1316–1346.

    CAS  Google Scholar 

  • Edmondson, D.G., Cheng, T.-C., Cserjesi, P., Chakraborty, T. & Olson, E.N. (1992) Analysis of the muogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2, Mol. Cell. Biol. 12, 3665–3677.

    PubMed  CAS  Google Scholar 

  • Elder, G.A., Liang, Z.Z., Snyder, S.E. & Lazzarini, R.A. (1992) Multiple nuclear factors interact with the promoter of the human neurofilament-M gene, Mol. Brain Res. 15,99–107.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L.F., V&erhaeghen, J.J., Bignami, A. & Gerstl, B. (1971) An acidic protein isolated from fibrous astrocytes, Brain Res. 28, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L.F. (1980) in Proteins of the nervous system (Bradshaw, R.A. & Schneider, D.M., eds) 2nd edn, pp 85–117, Raven Press, New York.

    Google Scholar 

  • Eng, L.F. (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes, J. Neuroimmunol. 8,203–214.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, E.H. (1992) Molecular genetics of epidermolysis bullosa, Science 256, 799–804.

    Article  PubMed  CAS  Google Scholar 

  • Escurat, M., Djabali, K., Gumpel, M., Gros, F. & Portier, M.-M. (1990) Differential expression of two neuronal intermediate filament proteins peripherin & the low-molecular-mass neurofilament protein (NF-L), during development of the rat, J. Neurosci. 10, 764–784.

    PubMed  CAS  Google Scholar 

  • Farrell, F.X., Sax, C.M. & Zehner, Z.E. (1990) A negative element involved in vimentin gene expression, Mol. Cell. Biol. 10, 2349–2358.

    PubMed  CAS  Google Scholar 

  • Feinstein, P.L., Weinmaster, G.A. & Milner, R.J. (1992) Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes & in Schwann cells, J. Neurosci. Res. 32, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, S., Battini, R., Kaczmarek, L., Rittling, S., Calabretta, B., de Riel, J.K., Philiponis, V., Wei, J. & Baserga, R. (1986) Coding sequence & growth regulation of the human vimentin gene, Mol. Cell. Biol. 6,539–548.

    Google Scholar 

  • Fliegner, K.H., Ching, G.Y. & Liem, R.K.H. (1990) The predicted amino acid sequence of a-internexin is that of a novel neuronal intermediate filament protein, EMBO J. 9, 740–755.

    Google Scholar 

  • Franke, W.W., Schmid, E., Osborn, M. & Weber, K. (1978) Different intermediate sized filaments distinguished by immunofluorescence microscopy, Proc. Natl Acad. Sci. USA 75, 5034–5038.

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen, K.E. & McKay, R. (1988) Proliferation & differentiation of rat neuroepithelial precurser cells in vivo, J. Neurosci. 8, 1144–1151.

    PubMed  CAS  Google Scholar 

  • Fuchs, E. & Green, H. (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte, Cell 19, 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E. & Green, H. (1981) Regulation of terminal differentiation of cultured human keratinocytes by vitamin A, Cell 25, 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E. (1991) Threads between useful & useless, Cure Biol. 1, 284–286.

    Article  CAS  Google Scholar 

  • Fuchs, E. & Coulombe, P.A. (1992) Of mice & men: genetic skin diseases of keratin, Cell 69, 899–902.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E., Esteves, R.A. & Coulombe, P.A. (1992) Transgenic mice expressing a mutant keratin-10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis, Proc. Natl Acad. Sci. USA 89, 6906–6910.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, T., Tokuyasu, K.T. & Singer, S.J. (1987) Direct morphological demonstration of the coexistence of vimentin & desmin in the same intermediate filaments of vascular smooth muscle cells, J. Submicrosc. Cytol. 19,1–9.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., De Chastonay, C., V&enkerckhove, J., Weber, K. & Franke, W.W. (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments & a specific a-type actin, Proc. Natl Acad. Sci. USA 78, 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Galvin, S., Loomis, C., Manabe, M., Dhouailly, D. & Sun, T.-T. (1989) The major pathways of keratinocyte differentiation as defined by keratin expression: an overview, Adv. Dermatol. 4, 277–300.

    CAS  Google Scholar 

  • Gard, D.L. & Lazarides, E. (1980) The synthesis & distribution of desmin & vimentin during myogenesis in vitro,Cell 19, 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N. & Weber, K. (1982) The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1,1649–1656.

    PubMed  CAS  Google Scholar 

  • Gieffers, C. & Krohne, G. (1991) In vitro reconstitution of recombinant lamm A & lamin A mutant lacking the carboxyterminal tail, Eur. J. Cell Biol. 55, 191–199.

    PubMed  CAS  Google Scholar 

  • Giese, G. & Traub, P. (1986) Induction of vimentin synthesis in mouse myeloma cells MPC-11 by 12-O-tetradecanoylphorbol13-acetate, Eue J. Cell Biol. 40,266–274.

    CAS  Google Scholar 

  • Giese, G., Kubbics, M. & Traub, R. (1992) Cell cycle-dependent vimentin expression in elutriator-synchronized, TPA-treated MPC-11 mouse plasmacytoma cells, Exp. Cell Res. 200, 118–125.

    Article  PubMed  CAS  Google Scholar 

  • Giordano, S., Glasgow, E., Tesser, R. & Schechter, N. (1989) A type II keratin is expressed in glial cells of the goldfish visual pathway, Neuron 2, 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  • Giudice, G.J. & Fuchs, E. (1987) The transfection of epidermal keratin genes into fibroblasts & simple epithelial cells: evidence for inducing a type I keratin by a type II gene, Cell 48, 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Glasgow, E., Druger, R.K., Levine, E.M., Fuchs, C. & Schechter, N. (1992) Plasticin, A novel type III neurofilament protein from goldfish retina: increased expression during optic nerve regeneration, Neuron 9, 1–20.

    Article  Google Scholar 

  • Glass, C. & Fuchs, E. (1988) Isolation, sequence & differential expression of a human K7 gene in simple epithelial cells, J. Cell Biol. 107, 1337–1350.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, J.E. & Chiu, F.C. (1984) Growth kinetics, cell shape & the cytoskeleton of primary astrocyte cultures, J. Neurochem. 42, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Gorham, J.D., Baker, H., Kegler, D. & Ziff, E.B. (1990) The expression of the neuronal intermediate filament protein peripherin in the rat embryo, Dei Brain Res. 57, 235–248.

    Article  CAS  Google Scholar 

  • Gossett, L.A., Kelvin, D.J., Sternberg, E.A. & Olson, E.N. (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes, Mol. Cell. Biol. 9, 5022–5033.

    PubMed  CAS  Google Scholar 

  • Granger, B.L. & Lazarides, E. (1983) Expression of the major neuro filament subunit in chicken erythrocytes, Science 221, 553–556.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield, J.S., Skoff, R.P., Maisel, H. & Eng, L. (1985) Glial fibrillary acidic protein is localized in lens epithelium, J. Cell Biol. 98, 1895–1898.

    Article  Google Scholar 

  • Hatzfeld, M. & Franke, W.W. (1985) Pair formation & promiscuity of cytokeratins: formation in vitro of heterotypic complexes & intermediate sized filaments by homologous & heterologous recombinations of purified polypeptides, J. Cell Biol. 101, 1826–1846.

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld, M. & Weber, K. (1990) The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I & type II keratins: use of site-specific mutagenesis & recombinant protein expression, J. Cell Biol. 110,1199–1210.

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld, M., Dodemont, H., Plessmann, U. & Weber, K. (1992) Truncation of recombinant vimentin by ompT. Identification of a short motif in the head domain necessary for assembly of type III intermediate filament proteins, FEBS Lett. 302, 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld, M. & Weber, K. (1992) A synthetic peptide representing the consensus sequence motif at the carboxy-terminal end of the rod domain inhibits intermediate filament assembly & disassembles preformed filaments, J. Cell Biol. 116, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Heid, H.W., Werner, E. & Franke, W.W. (1986) The complement of native a-keratin polypeptides of hair-forming cells: a subset of eight polypeptides that differ from epithelial cytokeratins, Differentiation 32, 101–119.

    Article  PubMed  CAS  Google Scholar 

  • Heid, H.W., Moll, I. & Franke, W.W. (1988a) Patterns of expression of trichocytic & epithelial cytokeratins in mammalian tissues. I. Human & bovine hair follicles, Differentiation 37, 137–157.

    Article  CAS  Google Scholar 

  • Heid, H.W., Moll, I. & Franke, W.W. (1988b) Patterns of expression of trichocytic & epithelial cytokeratins in mammalian tissues. II. Concomitant & mutually exclusive synthesis of trichocytic & epithelial cytokeratins in diverse human & bovine tissues (hair follicle, nail bed & matrix, lingual papilla, thymic reticulum), Differentiation 37, 215–230.

    Article  CAS  Google Scholar 

  • Heitlinger, E., Peter, M., Häner, M., Lustig, A., Aebi, U. & Nigg, E.A. (1991) Expression of chicken Lamin Bz in Escherichia coli: characterization of its structure, assembly, & molecular interactions, J. Cell Biol. 113, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Hennekes, H., Kuhn, S. & Traub, P. (1990) Coding sequence & flanking regions of the mouse vimentin gene, Mol. Gen. Genet. 221, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Hellmann, H., Fouquet, B., & Franke, W.W. (1989) Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin, Development 105, 279–298.

    Google Scholar 

  • Heruurann, H., Hofmann, I. & Franke, W.W. (1992) Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly, J. Mol. Biol. 223, 637–650.

    Article  Google Scholar 

  • Hoffman, P.N., Cleveland, D.W., Griffin, J.W., Land, P.W., Cowan, N.J. & Price, D.L. (1987) Neurofilament gene expression: a major determinant of axonal caliber, Proc. Natl Acad. Sci. USA 84, 3472–3476.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, I & Heuunann, H. (1992) Interference in vimentin assembly in vitro by synthetic peptides derived from the vimentin head domain, J. Cell Sci. 101,687–700.

    PubMed  CAS  Google Scholar 

  • Ip, W., Hartzer, M.K., Pang, Y.Y. S. & Robson, R.M. (1985) Assembly of vimentin in vitro & its implications concerning the structure of intermediate filaments, J. Mol. Biol. 183, 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Ip, W. (1988) Modulation of desmin intermediate filament assembly by a monoclonal antibody, J. Cell Biol. 106, 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Ishida-Yamamoto, A., Mcgrath, J.A., Chapman, S.J., Leigh, I.M., Lane, E.B. & Eady, R.A.J. (1991) Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic desease characterized by an abnormal keratin-filament network involving keratins K5 & K14, J. Invest. Dermatol. 97, 959–968.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, T.R. & Brown, I.R. (1992) Interaction of multiple nuclear proteins with the promoter region of the mouse 68-kDa neurofilament gene, J. Neurosci. Res. 32,149–158.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, B.W., Grund, C., Winter, S., Franke, W.W. & Ilmensee, K. (1981) Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation & intermediate-sized filaments in early postimplantiation embryos, Differentiation 20, 203–216.

    Article  PubMed  CAS  Google Scholar 

  • Jessen, K.R. & Mirsky, R. (1980) GIia1 cells in the enteric nervous system contain glial fibrillary acidic protein, Nature 286, 736–737.

    Article  PubMed  CAS  Google Scholar 

  • Jessen, K.R. & Mirsky, R. (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia, J. Neurosci. 3, 2206–2218.

    PubMed  CAS  Google Scholar 

  • Jessen, K.R., Thorpe, R. & Mirsky, R. (1984) Molecular identity, distribution & heterogeneity of glial fibrillary acidic protein: an immunoblotting & immunohistochemical study of Schwann cells, satellite cells, enteric glia, & astrocytes, J. Neurocytol. 13,187–200.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C.-K., Epstein, H.S., Tomic, M., Freedberg, I.M. & Blumenberg, M. (1990) Epithelial-specific keratin gene expression: identification of a 300 base-pair controlling segment, Nucleic Acids Res. 18, 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C.-K., Epstein, H.S., Tomic, M., Freedberg, E.M. & Blumenberg, M. (1991) Functional comparison of the upstream regulatory DNA sequences of four human epidermal keratin genes, Invest. Dermatol. 96, 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Julien, J.P., Meyer, D., Flavell, D., Jurst, J. & Grosveld, F. (1986) Cloning & developmental expression of the murine neurofilament gene family, Mol. Brain Res. 1, 243–250.

    Article  CAS  Google Scholar 

  • Julien, J.P., Grosveld, F., Yazdanbaksh, K., Flavell, P., Meijer, D. & Mushynski, W. (1987) The structure of a human neurofilament gene (NF-L): a unique exon-intron organization in the intermediate gene family, Biochim. Biophys. Acta 909,10–20.

    PubMed  CAS  Google Scholar 

  • Julien, J.P., Cote, F., Beaudet, L., Sidky, M., Flavell, D., Grosveld F. & Mushynski W. (1988) Sequence & structure of the mouse gene encoding for the largest neurofilament subunit, Gene 68,307–314.

    Article  PubMed  CAS  Google Scholar 

  • Julien, J.P., Beaudet, L., Tretjakoff, I. & Peterson, A. (1990) Neurofilament gene expression in transgenic mice, J. Physiol. (Paris) 84, 50–52.

    CAS  Google Scholar 

  • Kaplan, M., Chin, S.S.M., Fliegner, K.H. & Liem, R.K.H. (1990) aInternexin, a novel neuronal intermediate filament protein precedes the low molecular weight neurofilament protein NF-L in the developing rat brain, J. Neurosci. 10, 2735–2748.

    PubMed  CAS  Google Scholar 

  • Kelly, B.M., Gillespie, C.S., Sherman, D.L. & Brophy, P.J. (1992) Schwann cells of the myelin-forming phenotype express neurofilament protein NF-M, J. Cell Biol. 118, 397–410.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.H., Stellenach, V., Javors, J. & Fuchs, E. (1987) Regulation of human mesothelial cells differentiation: Opposing roles of retinoids & epidermal growth factor in the expression of intermediate filament proteins, J. Cell Biol. 105, 3039–3052.

    Article  PubMed  CAS  Google Scholar 

  • Klundert, F.A.J.M. van de, Eldik, G.J. van, Pieper, F.R., Jansen, H.J. & Bloemendal, H. (1992) Identification of two silencers flanking an AP-1 enhancer in the vimentin promoter, Gene 122, 337–343.

    Article  PubMed  Google Scholar 

  • Klymkowsky, M.W., Bachant, J.B. & Domingo, A. (1989) Functions of intermediate filaments, Cell Motil. Cytoskel. 14, 309–331.

    Article  CAS  Google Scholar 

  • Klymkowsky, M.W. (1991) Intermediate filaments. Getting under the skin, Nature 354, 264.

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky, M.W., Shook, D.R. & Maynell, L.A. (1992) Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation, Proc. Natl Acad. Sci. USA 89, 8736–8740.

    Article  PubMed  CAS  Google Scholar 

  • Knapp A.C. & Franke, W.W. (1989) Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation, Cell 59,67–79.

    Article  PubMed  CAS  Google Scholar 

  • Kopan, R., Traska, G. & Fuchs, E. (1987) Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization, J. Cell Biol. 105, 427–440.

    Article  PubMed  CAS  Google Scholar 

  • Krauss, S. & Franke, W.W. (1990) Organization & sequence of the human gene encoding cytokeratin 8, Gene 86, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Kreis, T.E., Geiger, B., Schmid, E., Jorcano, J.L. & Franke, W.W. (1983) De novo synthesis & specific assembly of keratin filaments in nonepithelial cells after microinjection of mRNA for epidermal keratin, Cell 32, 1125–1137.

    Article  PubMed  CAS  Google Scholar 

  • Krimpenfort, P., Schaart, G., Pieper, F.R., Ramaekers, F.C., Cuypers, H.T., van den Heuvel, R.M., Vree Egberts, W.T., van Eys, G.J., Berns, A. & Bloemendal, H. (1988) Tissue-specific expression of a vimentin-desmin hybrid gene in transgenic mice, EMBO J. 7, 941–947.

    PubMed  CAS  Google Scholar 

  • Kulesh, D.A. & Oshima, R.G. (1988) Cloning of the human keratin 18 gene & its expression in non-epithelial mouse cells, Mol. Cell. Biol. 8, 1540–1550.

    PubMed  CAS  Google Scholar 

  • L&on, F., Lemonnier, M., Benarous, R., Huc, C., Fiszman, M., Gros, F. & Portier, M.M. (1989) Multiple mRNAs encode peripherin, a neuronal intermediate filament protein, EMBO J. 8,1719–1726.

    Google Scholar 

  • L&ry, C.F., Joy, G.G. & Brown, I.R. (1990) Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization, J. Neurosci. Res. 25, 194–203.

    Article  Google Scholar 

  • Lane, E.B., Hogan, B.L.M., Kurkinen, M. & Garrels, J.I. (1983) Coexpression of vimentin & cytokeratins in parietal endoderm cells of early mouse embryo, Nature 303, 701–704.

    Article  PubMed  CAS  Google Scholar 

  • Lane, E.B., Rugg, E.L., Naysaria, H., Leigh, I.M., Heagerty, A.H.M., Ishida-Yamamoto, A. & Eady, R.A.J. (1992) A mutation in the conserved helix termination pepetide of keratin 5 in hereditary skin blistering, Nature 356, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo, A. & Bissell, M.J. (1983) TPA induces simultaneous alterations in the synthesis & organization of vimentin, Exp. Cell Res. 148, 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides, E. (1982) Intermediate filaments: a chemically heterogenous, developmentally regulated class of proteins, Annu. Rev. Biochem. 51, 219–250.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides, E., Granger, B.L., O’Connor, C. M., Breckier, J., Price, M. & Danto, S.I. (1982) Desmin-& vimentin-containing filaments & their role in the assembly of the Z-disks in muscle cells, Cold Spring Harbor Symp. Quant. Biol. 46,351–378.

    PubMed  Google Scholar 

  • Leask, A., Rosenberg, M., Vassar, R. & Fuchs, E. (1990) Regulation of a human epidermal keratin gene: sequences & nuclear factors involved in keratinocyte-specific transcription, Genes Dev. 4, 1985–1988.

    Article  PubMed  CAS  Google Scholar 

  • Leask, A., Byrne, C. & Fuchs, E. (1991) Transcription factor AP2 & its role in epidermal-specific gene expression, Proc. Natl Acad. Sci. USA 88,7948–7952.

    Article  PubMed  CAS  Google Scholar 

  • Lee, V.M.Y., Elder, G.A., Chen, L.C., Liang, Z.Z., Snyder, S.E., Friedrich, V.L. & Lazzarini, R.A. (1992) Expression of human mid-sized neurofilament subunit in transgenic mice, Mol. Brain Res. 15, 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Lees, J.F., Shneidman, P.S., Skuntz, S.F., Carden, M.J. & Lazzarini, R.A. (1988) The structure & organization of the human heavy neurofilament subunit & the gene encoding it, EMBO J. 7, 1947–1955.

    PubMed  CAS  Google Scholar 

  • Lendahl, U., Zimmerman, L.B. & McKay, R.D.G. (1990) CNS stem cells express a new class of intermediate filament protein, Cell 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, D.G.B., Gorham, J.D., Cole, P., Greene, L.A. & Ziff, E.B. (1988) A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein, J. Cell Biol. 106, 181–193.

    Article  PubMed  CAS  Google Scholar 

  • Lersch, R., Stellmach, V., Stocks, C., Giudice, G. & Fuchs, E. (1989) Isolation, sequence, & expression of a human keratin K5 gene: transcriptional regulation of keratins & insights into pairwise control, Mol. Cell. Biol. 9, 3685–3697.

    PubMed  CAS  Google Scholar 

  • Letai, A., Coulombe, P.A. & Fuchs, E. (1992) Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations, J. Cell Biol. 116, 1181–1195.

    Article  PubMed  CAS  Google Scholar 

  • Leube, R.E., Bader, B.L., Bosch, F.X., Zimbelmann, R., Achtstätter, T. & Franke, W.W. (1988) Molecular characterization & expression of the stratification-related cytokeratins 4 & 15, J. Cell Biol. 106, 1249–1261.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S.A. & Cowan, N.J. (1985a) Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure, J. Neurochem. 45, 913–919.

    Article  CAS  Google Scholar 

  • Lewis, S.A. & Cowan, N.J. (1985b) Genetics, evolution & expression of the 68,000-mol-wt neurofilament protein: isolation of a cloned cDNA probe, J. Cell Biol. 100, 843–850.

    Article  CAS  Google Scholar 

  • Li, Z., Lilienbaum, A., Butler-Brown, G. & Paulin, D. (1989) Human desmin coding gene: complete sequence, characterization & regulation of expression during myogenesis & development, Gene 78, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z. & Paulin, D. (1991) High level desmin expression depends on a muscle-specific enhancer, J. Biol. Chem. 266,6562–6570.

    PubMed  CAS  Google Scholar 

  • Lieberburg, I., Spinner, N., Snyder, S., &erson, J., Goldgaber, D., Smulowitz, M., Carroll, Z., Emanuel, B., Breitner, J. & Rubin, L. (1989) Cloning of a cDNA encoding the rat high molecular weight neurofilament peptide (NF-H): developmental & tissue expression in the rat, & mapping of its human homologue to chromosomes 1 & 22, Proc. Natl Acad. Sci. USA 86,2463–2467.

    Article  PubMed  CAS  Google Scholar 

  • Liem, R.K.H. (1990) Neuronal intermediate filaments, Curr. Opin. Cell Biol. 2, 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Lilienbaum, A.V., Legagneux, M.-M., Portier, K., Dellagi, K. & Paulin, D. (1986) Vimentin gene: expression in human lymphocytes & in Burkitt’s lymphoma cells, EMBO J. 5, 2809–2814.

    PubMed  CAS  Google Scholar 

  • Lilienbaum, A., Li, Z., Butler-Browne, G., Bolmont, C., Grimaud, J.A. & Paulin, D., (1988) Human desmin gene: utilization as a marker of human muscle differentiation, Cell. Mol. Biol. 34,663–672.

    PubMed  CAS  Google Scholar 

  • Lilienbaum, A., Duc Dodon, M., Alex&re, C., Gazzolo, L. & Paulin, D. (1990) Effect of human T-cell leukemia vines type I Tax protein on activation of the human vimentin gene, J. Viral. 64, 256–263.

    CAS  Google Scholar 

  • Lu, X. & Lane E.B. (1990) Retrovirus-mediated transgenic keratin expression in cultured fibroblasts: specific domain functions in keratin stabilization & filament formation, Cell 62, 681–696.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M.H., O’Guin, W.M., Hardy, C., Mak, L. & Sun, T.T. (1986) Acidic & basic hair/nail (‘hard”) keratins: their colocalization in upper cortical & cuticle cells of the human hair follicle & their relationship to “soft” keratins, J. Cell Biol. 103,2593–2606.

    Article  PubMed  CAS  Google Scholar 

  • Magin, T.M., Hatzfeld, M & Franke W.W. (1987) Analysis of cytokeratin domains by cloning & expression of intact & deleted polypeptides in Escherichia coli, EMBO J. 6,2607–2615.

    PubMed  CAS  Google Scholar 

  • Mansbridge, J.N. & Knapp, A.M. (1987) Changes in keratinocyte maturation during wound healing, J. Invest. Dermatol. 89, 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Markl, J. (1991) Cytokeratins in mesenchymal cells: impact on functional concepts of the diversity of intermediate filament proteins, J. Cell Sci. 98,261–264.

    PubMed  CAS  Google Scholar 

  • McCormick, M.B., Coulombe, P.A. & Fuchs, E. (1991) Sorting out of networks: consequences of domain swapping on IF recognition & assembly, J. Cell Biol. 113, 1111–1124.

    Article  PubMed  CAS  Google Scholar 

  • Milam, L. & Erikson, H.P. (1984) Structural characteristics of the desmin protofilament, J. Ultrastruct. Res. 89, 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Miura, M., Tamura, T. & Mikoshiba, K. (1990) Cell-specific expression of the mouse glial fibrillary acidic protein gene: identification of the cis-& trans-acting promoter elements for astrocyte-specific expression, J. Neurochem. 55,1180–1188.

    Article  PubMed  CAS  Google Scholar 

  • Moir, R.D., Donaldson, A.D. & Steward, M. (1991) Expression in Escherichia coli of human lamins A & C: influence of head & tail domains on assembly properties & paracrystal formation, J. Cell Sci. 99, 363–372.

    PubMed  CAS  Google Scholar 

  • Mokuno, K., Kamholz, J., Behrman, T., Black, C., Sessa, M., Feinstein, D., Lee, V. & Pleasure, P. (1989) Neuronal modulation of Schwann cell glial fibrillary acidic protein (GFAP), J. Neuro-sci. Res. 23,396–405.

    Article  CAS  Google Scholar 

  • Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. & Krepler, R. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia tumors & cultured cells, Cell 31, 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Moll, R. (1991) Molecular diversity of cytokeratins: significance for cell & tumor differentiation, Acta Histochem. Suppl. 41, 117–127.

    PubMed  CAS  Google Scholar 

  • Monteiro, M.J. & Cleveland, D.W. (1989) Expression of NF-L and NF-M in fibroblasts reveals coassembly of neurofilament and vimentin subunits, J. Cell Biol. 108, 579–593.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro, M.J., Hoffman, P.N., Gearhart, J.D. & Clevel&, D.W. (1990) Expression of NF-L in both neuronal & nonneuronal cells of transgenic mice: increased neurofilament density in axons without affecting caliber, J. Cell Biol. 111, 1543–1557.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, R.S., de Vellis, J., Lee, Y., Bradshaw, R.A., & Eng, L.F. (1985) Hormone & growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes, J. Neurosci. 14, 167–176.

    Article  CAS  Google Scholar 

  • Muma, N.A., Stunt, H.H. & Hoffman, P.N. (1991) Postnatal increases in neurofilament gene expression correlate with the radial growth of axons, J. Neurocytol. 20, 844–854.

    Article  PubMed  CAS  Google Scholar 

  • Nakahira, K., Ikenada, K., Wada, K., Tamura, T., Furuichi, T. & Mikoshiba, K. (1990) Structure of the 68 kDa neurofilament gene & regulation of its expression, J. Biol. Chem. 265,19786–19791.

    PubMed  CAS  Google Scholar 

  • Nakatani, Y., Horikoshi, M., Brenner, M., Yamamoto, T., Besnard, F., Roeder, R.G. & Freese, E. (1990) A downstream initiation element required for efficient TATA box binding & in vitro function of TFIID, Nature 348,86–88.

    Article  PubMed  CAS  Google Scholar 

  • Napolitano, E.W., Chin, S.S.M., Colman, D.R. & Liem, R.K.H. (1987) Complete amino acid sequence & in vitro expression of rat NF-M, the middle molecular weight neurofilament protein, Neurosci. 7, 2590–2599.

    PubMed  CAS  Google Scholar 

  • Nelson, W. & Sun, T.-T. (1983) The 50- & 58-kalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies, J. Cell Biol. 97, 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Ngai, J., Bond, V.V., Wold, B.J. & Lazarides, E. (1987) Expression of transfected vimentin genes in differentiating murine erythroleukemia cells revealed divergent cis-acting regulation of avian & mammalian vimentin sequences, Mol Cell. Biol. 7, 3955–3970.

    PubMed  CAS  Google Scholar 

  • Ohtsuki, M., Tomic-Canic, M., Freedberg, I. & Blumenberg, M. (1992) Nuclear proteins involved in transcription of the human K5 keratin gene, J. Invest. Dermatol. 99,206–215.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, M., Caselitz, J. & Weber, K. (1981) Heterogeneity of intermediate filament expression in human vascular smooth muscle: a gradient in desmin positive cells from the rat aortic arch to the level of the arteria iliaca communis, Differentiation 20, 196–202.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, M. & Weber K. (1986) Intermediate filament proteins: a multigene family distinguishing major cell lineages, Trends Biochem. Sci. 11, 469–472.

    Article  CAS  Google Scholar 

  • Osborn, M. (1987) Intermediate filament typing of cells & tumors yields information useful in histology & cytology, Fortschr. Zool. 34, 261–273.

    CAS  Google Scholar 

  • Oshima, R.G., Howe, W.E., Klier, F.G., Adamson, E.D. & Shevinsky, L.H. (1983) Intermediate filament protein synthesis in pre-implantation murine embryos, Dev. Biol. 99,447–455.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, R.G., Trevor, K., Shevinsky, L.H., Ryder, O.A. & Cecena, G. (1988) Identification of the gene coding for the endo B murine cytokeratin & its methylated, stable inactive state in mouse nonepithelial cells, Genes Dev. 2, 505–516.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, R.G., Abrams, L. & Kulesh, D. (1990) Activation of an intron enhancer within the keratin 18 gene by expression of cfos & c-jun in undifferentiated F9 embryonal carcinoma cells, Genes Dev. 4,835–848.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, R.G. (1992) Intermediate filament molecular biology, Cure. Opin. Cell Biol. 4, 110–116.

    Article  CAS  Google Scholar 

  • Ouellet, T., Levac, P. & Royal, A. (1988) Complete sequence of the mouse type-II keratin EndoA: its amino-terminal region resembles mitochondrial signal peptides, Gene 70, 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Pachter, J.S. & Liem, R.K.H. (1985) a-Internexin, a 66 kD intermediate filament-binding protein from mammalian central nervous tissues, J. Cell Biol. 101,1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Papamarcaki, T., Kouklis, P.D., Kreis, T.E. & Georgatos, S.D. (1991) The lamin B-fold. Anti-idiotypic antibodies reveal a structural complementarity between nuclear lamin B & cytoplasmic intermediate filament epitopes, J. Biol. Chem. 266, 21247–21251.

    PubMed  CAS  Google Scholar 

  • Parry, D.A. & Steinert, P.M. (1992) Intermediate filament structure, Cure Opin. Cell Biol. 4, 94–98.

    Article  CAS  Google Scholar 

  • Parysek, L.M. & Goldman, R.D. (1987) Characterization of inter- mediate filaments in PC12 cells, J. Neurosci. 7, 781–791.

    PubMed  CAS  Google Scholar 

  • Parysek, L.M., Chisolm, R.L., Ley, C.A. & Goldman, R.D. (1988) A type III intermediate filament gene is expressed in mature neurons, Neuron 1, 395–401

    Article  PubMed  CAS  Google Scholar 

  • Parysek, L.M. & Goldman, R.D. (1988) Distribution of a novel 57 kDa intermediate filament (IF) protein in the nervous system, J. Neurosci. 8, 555–563.

    PubMed  CAS  Google Scholar 

  • Perreau, J., Lilienbaum, A., Vasseur, M. & Paulin, D (1988) Nucleotide sequence of the human vimentin gene & regulation of its transcription in tissues & cultured cells. Gene,62, 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Pieper, F.R., Schaart, G., Krimpenfort, P.J., Henderik, J.B., Moshage, H.J., van de Kemp, A., Ramaekers, F.C., Berns, A. & Bloemendal, H. (1989a) Transgenic expression of the muscle-specific intermediate filament protein desmin in nonmuscle cells, J. Cell Biol. 108, 1009–1024.

    Article  CAS  Google Scholar 

  • Pieper, F.R., Slobbe, R.L., Ramaekers, F.C.S., Cuypers, H.T. & Bloemendal, H. (1989b) Upstream regions of the hamster desmin & vimentin genes regulate expression during in vitro myogenesis, EMBO J. 6, 3611–3618.

    Google Scholar 

  • Pieper, F.R., van de Klundert, F.M., Raats, J.M.H., Henderik, & Bloemendal, H. (1992) Regulation of vimentin expression in cultures epithelial cells, Eur: J. Biochem. 210,509–519.

    Article  CAS  Google Scholar 

  • Piette, J., Bessereau, J.-L., Huchet, M. & Changeux, J.-P. (1990) Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor a-subunit gene, Nature 345, 353–355.

    Article  PubMed  CAS  Google Scholar 

  • Pleasure, S.J., Lee, V.M.-Y. & Nelson, D.L. (1990) Site-specific phosphorylation of the middle molecular weight human neurofilament protein in transfected non-neuronal cells, J. Neurosci. 10, 2428–2437.

    PubMed  CAS  Google Scholar 

  • Podolin, P.L. & Prystowsky, M.B. (1991) The kinetics of vimentin RNA & protein expression in interleukin 2-stimulated T lymphocytes, J. Biol. Chem. 266, 5870–5875.

    PubMed  CAS  Google Scholar 

  • Pollock, R. & Treismann, R. (1991) Human SRF-related proteins: DNA-binding properties & potential regulatory targets, Genes Dev. 5, 2327–2341.

    Article  PubMed  CAS  Google Scholar 

  • Portier, M.-M., Brachet, P., Croizat, B. & Gros, F. (1984a) Regulation of peripherin in mouse neuroblastoma & rat PC12 pheochromocytoma cell lines, Dev. Neurosci. 6, 215–226.

    Article  CAS  Google Scholar 

  • Portier, M.-M., De Nechaud, B. & Gros, F. (1984b) Peripherin a new member of the intermediate filament protein family, Dev. Neurosci. 6, 335–244.

    Article  CAS  Google Scholar 

  • Potschka, M., Nave, R., Weber, K. & Geisler, N. (1990) The two coiled coils in the isolated rod domain of the intermediate filament protein desmin are staggered, Eur. J. Biochem. 190,503–508.

    Article  PubMed  CAS  Google Scholar 

  • Powell, B.C. & Rogers, G.E. (1990) Cyclic hair-loss & regrowth in transgenic mice overexpressing an intermediate filament gene, EMBO J. 9,1485–1493.

    PubMed  CAS  Google Scholar 

  • Quax, W., Vree Egberts, W., Hendriks, W., Quax-Jeuken, Y. & Bloemendal, H. (1983) The stucture of the vimentin gene, Cell 35, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Quax-Jeuken, Y.E.F.M., Quax, W.J. & Bloemendal, H. (1983) Primary & secondary structure of hamster vimentin predicted from the nucleotide sequence, Proc. Natl Acad. Sci. USA 80, 3548–3552.

    Article  PubMed  CAS  Google Scholar 

  • Quax, W., van den Broek, L., Vree Egberts, W., Ramaekers, F. & Bloemendal, H. (1985) Characterization of the hamster desmin gene: expression & formation of desmin filaments in non-muscle cells after gene transfer, Cell 43, 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R.A. & Franke, W.W. (1982) Heteropolymer filaments of vimentin & desmin in vascular smooth muscle tissue & cultured baby hamster kidney cells demonstrated by chemical crosslinking, Proc. Natl Acad. Sci. USA 79, 3452–3456.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R.A., Cohlberg, J.A., Schiller, D.L., Hatzfeld, M. & Franke, W.W. (1984) Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes & hepatoma cells, J. Mol. Biol. 178, 365–388.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R.A., Schiller, D.L., Hatzfeld, M., Achstätter, T., Moll, R., Jorcano, J.L., Magin, T.M. & Franke, W.W. (1985) Patterns of expression & organization of cytokeratin intermediate filaments, Ann. NY Acad. Sci. 455, 282–306.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R.A., Moir, R.D. & Stewart, M. (1989) Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties & paracrystal formation, J. Cell Sci. 93, 71–83.

    PubMed  CAS  Google Scholar 

  • Raats, J.M.H., Pieper, F.R., Vree Egberts, W.T.M., Verrijp, K.N., Ramaekers, F.C.S. & Bloemendal, H. (1990) Assembly of amino-terminally deleted desmin in vimentin-free cells, J. Cell Biol. 111, 1971–1985.

    Article  PubMed  CAS  Google Scholar 

  • Raats, J.M.H., Henderik, J.B.J., Verdijk, M., van Oort, F.L.G., Gerards, W.L.H., Ramaekers, F.C.S. & Bloemendal, H. (1991) Assembly of carboxy-terminally deleted desmin in vimentin-free cells, Eue J. Cell Biol. 56, 84–103.

    CAS  Google Scholar 

  • Raats, J.M.H., Gerards, W.L.H., Schreuder, M.I., Grund, C., Henderik, J.B.J., Hendriks, I.L.A.M., Ramaekers, F.C.S. & Bloemendal, H. (1992) Biochemical & structural aspects of transiently & stably expressed mutant desmin in vimentin-free & vimentin-containing cells, Eue J. Cell Biol. 58, 108–127.

    CAS  Google Scholar 

  • Raats, J.M.H. & Bloemendal, H. (1992) The role of protein domains in the assembly process of intermediate filaments, Progr. Nucleic Acid Res. Mol. Biol. 43, 57–86.

    Google Scholar 

  • Rakic, R (1981) Neuronal-glial interaction during brain development, Trends Neurosci. 4, 184–187.

    Article  Google Scholar 

  • Ramekers, E C. S., Puts, J. J. G., Moeseker, O., Kant, A., Huysmans, A., Haag, D., Jap, R H. K., Herman, C. J. & Vooys, G. R (1983) Antibodies to intermediate filament proteins in the histochemical indentification of human tumours; an overview, Histochem. J. 15,691–713.

    Article  Google Scholar 

  • Reeves, S.A., Helman, L.J., Allison, A. & Israel, M.A. (1989) Molecular cloning & primary structure of human glial fibrillary acidic protein, Proc. Natl Acad. Sci. USA 86, 5178–5182.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, B.A. & Weiss, S. (1992) Generation of neurons & astrocytes from isolated cells of the adult mammalian central nervous system, Science 27, 1707–1710.

    Article  Google Scholar 

  • Riol, H., Fages, C. & Tardy, M. (1992) Trancriptional regulation of glial fibrillary acidic protein (GFAP) - mRNA expression during postnatal development of mouse brain, J. Neurosci. Res. 32, 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Rittling, S.R. & Baserga, R. (1987) Functional analysis & growth factor regulation of the human vimentin promoter, Mol. Cell. Biol. 7, 3908–3915.

    PubMed  CAS  Google Scholar 

  • Rittling, S.R., Coutinho, L., Amram, T. & Kolbe, M. (1989) AP-1/jun binding sites mediate serum inducibility of the human vimentin promoter, Nucleic Acids Res. 17,1619–1633.

    Article  PubMed  CAS  Google Scholar 

  • Robson, R.M. (1989) Intermediate filaments, Curr. Opin. Cell Biol. 1, 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Rorke, E.A., Crish, J. & Eckert, R.L. (1992) Central rod domain insertion & carboxy-fusion mutants of human cytokeratin K19 are incorporated into endogenous keratin filaments, J. Invest. Dermatol. 98, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, D.S., Steinert, P.M., Chung, S., Huff, C.A., Johnson, J., Yuspa, S.H. & Roop, D.R. (1991) A human epidermal differentiation-specific keratin gene is regulated by calcium but not negative modulators of differentiation in transgenic mouse keratinocytes, Cell Growth Differ. 2,107–113.

    PubMed  CAS  Google Scholar 

  • Rothnagel, J.A., Dominey, A.M., Dempsey, L.D., Longley, M.A., Greenhalgh, D.A., Gagne, T.A., Huber, M., Frenk, E., Hohl, D. & Roop, D.R. (1992) Mutations in the rod domains of keratin-1 & keratin-10 in epidermolysis hyperkeratosis, Science 257, 1128–1130.

    Article  PubMed  CAS  Google Scholar 

  • Rungger-Brändle, E., Achtstätter, T. & Franke, W.W. (1989) An epithelium-type cytoskeleton in a glial cell astrocytes of an amphibian optic nerve contain cytokeratin filaments & are connected by desmosomes, J. Cell Biol. 109, 705–716.

    Article  PubMed  Google Scholar 

  • Sarkar, S. & Cowan, N.J. (1991) Intragenic sequences affect the expression of the gene encoding glial fibrillary acidic protein, Neurochem. 57, 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Sarthy, P.V., Fu, M. & Huang, J. (1991) Developmental expression of the glial fibrillary acidic protein (GFAP) gene in the mouse retina, Cell. Mol. Neurobiol. 11,623–637.

    Article  PubMed  CAS  Google Scholar 

  • Sartorelli, V., Webster, K.A. & Kedes, L. (1990) Muscle-specific expression of the cardiac a-actin gene requires MyoD1, CArGbox binding factor, & Sp1, Genes Dev. 4,1811–1822.

    Article  PubMed  CAS  Google Scholar 

  • Sassoon, D., Lyons, G., Wright, W.E., Lin, V., Lassar, A, Weintraub, H. & Buckingham, M. (1989) Expression of two myogenic regulatory factors myogenin & MyoD1 during mouse embryogenesis, Nature 341 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Sauk, J.J., Krumweide, M., Cocking-Johnson, D. & White, J.G. (1984) Reconstitution of cytokeratin filaments in vitro: further evidence for the role of nonhelical peptides in filament assembly, J. Cell Biol. 99, 1590–1597.

    Article  PubMed  CAS  Google Scholar 

  • Sax, C.M., Farrell, F.X., Tobian, J.A. & Zehner, Z.E. (1988) Multiple elements are required for expression of an intermediate filament gene, Nucleic Acids Res. 16, 8057–8076.

    Article  PubMed  CAS  Google Scholar 

  • Sax, C.M., Farrell, F.X. & Zehner, Z.E. (1989) Down-regulation of vimentin gene expression during myogenesis is controlled by a 5′-flanking sequence, Gene 78 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Sax, C.M., Farrell, F.X., Zehner, Z.E. & Piatigorsky, J. (1990) Regulation of vimentin gene expression in the ocular lens, Dew. Biol. 139 56–64.

    Article  CAS  Google Scholar 

  • Schaart, G., Viebahn, C., Langmann, H. & Ramaekers, F. (1989) Desmin & titin expression in early postimplantation mouse embryos, Development 107 585–596.

    PubMed  CAS  Google Scholar 

  • Schmid, E., Osborn, M., Rungger-Brändle, E., Gabbiani, G., Weber, K. & Franke, W.W. (1982) Distribution of vimentin & desmin filaments in smooth muscle tissue of mammalian & avian aorta, Exp. Cell Res. 137 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer, J., Franke, W.W. & Schachner, M. (1981) Immunocytochemical demonstration of vimentin in astrocytes & ependymal cells of developing & adult mouse nervous system, J. Cell Biol. 90 435–447.

    Article  PubMed  CAS  Google Scholar 

  • Shafit-Zagardo, B., Kume-Iwaki, A. & Goldman, J.E. (1988) Astrocytes regulate GFAP mRNA levels by cyclic AMP & protein kinase C dependent mechanisms, Glia 1 346–354.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe, C.R. (1988) Developmental expression of a neurofilamentM & two vimentin like genes in Xenopus laevis, Development 103 269–277.

    CAS  Google Scholar 

  • Shneidman, P.S., Bruce, J., Schwartz, M.L. & Schlaepfer, W.W. (1992) Negative regulatory regions are present upstream in the three mouse neurofilament genes, Mol. Brain Res. 13 127–138.

    Article  PubMed  CAS  Google Scholar 

  • Siebert, P.D. & Fukuda, M. (1985) Induction of cytoskeletal vimentin & actin gene expression by a tumor-promoting phorbol ester in the human leukemic cell line K562, J. Biol. Chem. 60 3868–3874.

    Google Scholar 

  • Skalli, O. & Goldman R.D. (1991) Recent insights into the assembly, dynamics & function of intermediate filament networks, Cell Motil. Cytoskel. 19 67–79.

    Article  CAS  Google Scholar 

  • Snape, A.M., Winning, R.S. & Sargent, T.D. (1991) Transcription factor AP-2 is tisue-specific in Xenopus & is closely related or identical to keratin transcription factor (KTF-1), Development 113 283–293.

    PubMed  CAS  Google Scholar 

  • Stark, H.J., Breitkreutz, D, Limat, A., Bowden, P. & Fusenig, N.E. (1987) Keratins of the human hair follicle: “hyperproliferative” keratins consistently expressed in outer root sheath cells in vivo & in vitro, Differentiation 35, 236–248.

    Article  CAS  Google Scholar 

  • Stark, H.J., Breitkreutz, D, Limat, A, Ryle, C.M., Roop, D., Leigh, I.M. & Fusenig, N. (1990) Keratins 1 & 10 or homologues as regular constituents of inner root sheath & cuticle cells in the human hair follicle, Eur: J. Cell Biol. 52 359–372.

    CAS  Google Scholar 

  • Steinert, P.M., Parry, D.A.D., Idler, W.W., Johnson, L.D., Steven, A.C. & Roop D.R. (1985) Amino acid sequences of mouse & human epidermal type II keratins of M 67000 provide a systematic basis for the structural & functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260 7142–7149.

    PubMed  CAS  Google Scholar 

  • Steinert, P.M., Steven, A.C. & Roop, D.R. (1985) The molecular biology of intermediate filaments, Cell 42 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P.M. & Roop D.R. (1988) Molecular & cellular biology of intermediate filaments, Annu. Rev. Biochem. 57 593–625.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P.M. (1990) The two-chained coiled-coil molecule of native epidermal keratin intermediate filaments is a type I-type II heterodimer, J. Biol. Chem. 265 8766–8774.

    PubMed  CAS  Google Scholar 

  • Steinert, P.M. & Liem R.K.H. (1990) Intermediate filament dynamics, Cell 60 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. (1991a) Organization of coiled-coil molecules in native mouse keratin 1/keratin 10 intermediate filaments: evidence for alternating rows of antiparallel in-register & in antiparallel staggered molecules, J. Struct. Biol. 107 157–174.

    Article  CAS  Google Scholar 

  • Steinert, P. (1991b) Analysis of the mechanism of assembly of mouse keratin 1/ keratin 10 intermediate filaments in vitro suggests that intermediate filaments are built from multiple oligomeric units rather than a unique tetrameric building block, J. Struct. Biol. 107 175–188.

    Article  CAS  Google Scholar 

  • Stellmach, V., Leask, A. & Fuchs, E (1991) Retinoid-mediated transcriptional regulation of keratin genes in human epidermal & squamous cell carcinoma cells, Proc. Natl Acad. Sci. USA 88 4582–4586.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, M., Quinlan, R.A. & Moir R.D. (1989) Molecular interactions in paracrystals of a fragment corresponding to the a-helical coiled-coil rod portion of glial fibrillary acidic protein: evidence for an antiparallel packing of molecules & polymorphism related to intermediate filament structure, J. Cell Biol. 109 225–234.

    Article  Google Scholar 

  • Stewart, M. (1990) Intermediate filaments: structure, assembly & molecular interactions, Curr. Opin. Cell Biol. 2, 91–100.

    Article  Google Scholar 

  • Stoler, A., Kopan, R. Duvic, M. & Fuchs, E. (1988) The use of monospecific antibodies & cRNA probes reveals abnormal pathways of differentiation in human epidermal diseases, J. Cell Biol. 107 427–446.

    Article  PubMed  CAS  Google Scholar 

  • Stover, D.M. & Zehner, Z.E. (1992) Identification of a cis-acting DNA antisilencer element which modulates vimentin gene expression, Mol. Cell. Biol. 12 2230–2240.

    PubMed  CAS  Google Scholar 

  • Takemoto, Y., Fujimura, Y., Matsumoto, M., Tamai, Y., Morita, T., Matsushiro, A. & Nozaki, M. (1991) The promoter of the endo A cytokeratin gene is activated by a 3′-downstream enhancer, Nucleic Acids Res. 19 2761–2765.

    Article  PubMed  CAS  Google Scholar 

  • Tang, P., Sharpe, C.R., Mohun, T.J. & Wylie C.C. (1988) Vimentin expression in oocytes, eggs & early embryos of Xenopus laevis, Development 103 279–287.

    CAS  Google Scholar 

  • Thompson, M.A. & Ziff, E.B. (1989) Structure of the gene encoding peripherin, an NGF-regulated neuronal-specific type III intermediate filament protein, Neuron 2, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, M.A., Lee, E, Lawe, D., Gizang-Ginsberg, E. & Ziff, E.B. (1992) Nerve growth factor-induced derepression of peripherin gene expression is associated with alterations in proteins binding to a negative regulatory element, Mol. Cell. Biol. 12 2501–2513.

    PubMed  CAS  Google Scholar 

  • Tokutake, S. (1990) On the assembly mechanism of neurofilaments, Int. J. Biochem. 22 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu, K.T., Maher, P.A. & Singer, S.J. (1984) Distributions of vimentin & desmin in developing chick myotubes in vivo. I. Immunofluorescence study, J. Cell Biol. 98 1961–1972.

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu, K.T., Maher, P.A. & Singer, S.J. (1985) Distributions of vimentin & desmin in developing chick myotubes in vivo. II. Immunoelectron microscopic study, J. Cell Biol. 100 1157–1166.

    Article  PubMed  CAS  Google Scholar 

  • Tomic, M., Jiang, C.-K., Epstein, H.S., Freedberg, I.M., Samuels, H.H. & Blumenberg, M. (1990) Nuclear receptors for retinoic acid & thyroid hormone regulate transcription of keratin genes, Cell Regul. 1 965–973.

    PubMed  CAS  Google Scholar 

  • Torpey, N.P., Heasman, J. & Wylie, C.C. (1990) Identification of vimentin & novel vimentin-related proteins in Xenopus oocytes & early embryos, Development 110 1185–1195.

    PubMed  CAS  Google Scholar 

  • Torpey, N., Wylie, C.C. & Heasman, J. (1992) Function of maternal cytokeratin in Xenopus development, Nature 357 413–415.

    Article  PubMed  CAS  Google Scholar 

  • Traub, P., Scherbarth, A., Wiegers, W. & Shoeman, R.L. (1992) Salt-stable interaction of the aminoterminal head region of vimentin with the a-helical rod domain of cytoplasmic intermediate filament proteins & it relevance to protein structure & filament formation & stability, J. Cell Sci. 101 363–381.

    PubMed  CAS  Google Scholar 

  • Troy, C.M., Brown, K., Greene, L.A. & Shelanski, M.L. (1990) Ontogeny of the neural intermediate filament protein peripherin in the mouse embryo, Neuroscience 36 217–237.

    Article  PubMed  CAS  Google Scholar 

  • Troyanovsky, S.M., Leube, R.E. & Franke, W.W. (1992) Characterization of the human gene encoding cytokeratin-17 & its expression pattern, Eur. J. Cell Biol. 59 127–137.

    PubMed  CAS  Google Scholar 

  • Tsuro, A., Nakamura, N., Takayama, E., Suzuki, Y., Hirayoshi, K. & Nagata, K. (1990) Regulation of the expression of vimentin gene during the differentiation of mouse myeloid leukemia cells, J. Cell Biol. 110 1655–1664.

    Article  Google Scholar 

  • Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. (1989) Tissue-specific & differentiation-specific expression of a human K14 keratin gene in transgenic mice, Proc. Natl Acad. Sci. USA 86 1563–1567.

    Article  PubMed  CAS  Google Scholar 

  • Vassar, R., Coulombe, P.A., Degenstein, L., Albers, K. & Fuchs, E. (1991) Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease, Cell 64 365–380.

    Article  PubMed  CAS  Google Scholar 

  • Vitadello, M., Matteoli, M. & Gorza, L. (1990) Neurofilament proteins are co-expressed with desmin in hearth conduction system myocytes, J. Cell Sci. 97 11–21.

    PubMed  CAS  Google Scholar 

  • Wagner, A.P. (1989) On the relationships between the rate of cytoskeletal stable assemblies turnover, stability of the differentiated state, development & aging, J. Them: Biol. 138 175–184.

    Article  CAS  Google Scholar 

  • Ward, G.E. & Kirschner, M.W. (1991) Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C, Cell 61 561–577.

    Article  Google Scholar 

  • Waseem, A., Alex&er, C.M., Steel, J.B. & Lane, E.B. (1990) Embryonic simple epithelial keratins 8 & 18: chromosomal location emphasizes difference from other keratin pairs, The New Biologist 2, 464–478.

    PubMed  CAS  Google Scholar 

  • Weinstein, D.E., Shelanski, M.L. & Liem, R.K.H. (1991) Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons, J. Cell Biol. 112 1205–1213.

    Article  PubMed  CAS  Google Scholar 

  • Wentworth, B.M., Donoghue, M., Engert, J.C., Berglund, E.B. & Rosenthal, N. (1991) Paired MyoD-binding sites regulate myosin light chain gene expression, Proc. Natl Acad. Sci. USA 88 1242–1246.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B.W., Edwards, K.J., Sleigh, M.J., Byrne, C.R. & Ward K.A. (1988) Complete sequence of a type I microfibrillar wool keratin gene, Gene 73, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A.K., Coulombe, P.A. & Fuchas, E. (1992) The roles of K5 & K14 head, tail & R/KLLEGE domains in keratin filament assembly in vitro, J. Cell Biol. 119 401–414.

    CAS  Google Scholar 

  • Yaffe, D. & Saxel, O. (1979) A myogenic cell line with altered serum requirements for differentiation, Differentiation 7, 159–166.

    Article  Google Scholar 

  • Yuspa, S.H. & Harris, C.C. (1974) Altered diffentiation of mouse epidermal cells treated with retinyl acetate in vitro, Exp. Cell Res. 86 95–105.

    Article  CAS  Google Scholar 

  • Yuspa, S.H., Kilkenny, A.E., Steinert, P.M. & Roop, D.R. (1989) Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro, J. Cell Biol. 109 1207–1217.

    CAS  Google Scholar 

  • Zehner, Z.E. & Paterson, B.M. (1983) Characterization of the chicken vimentin gene: single copy gene producing multiple mRNAs, Proc. Natl Acad. Sci. USA 80 911–915.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X.M., Idler, W.W., Steven, A.C., Roop, D.R. & Steinert, P.M. (1988) The complete sequence of human intermediate filament chain keratin 10: subdomainal divisions & a model for folding of end domain sequences, J. Biol. Chem. 163 15584–15589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Federation of European Biochemical Societies

About this chapter

Cite this chapter

van de Klundert, F.A.J.M., Raats, J.M.H., Bloemendal, H. (1994). Intermediate filaments: regulation of gene expression and assembly. In: EJB Reviews 1993. EJB Reviews, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78757-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78757-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57620-4

  • Online ISBN: 978-3-642-78757-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics