Skip to main content

The Adsorption of Hydrogen at Copper Surfaces: A Model System for the Study of Activated Adsorption

  • Chapter
Surface Reactions

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 34))

Abstract

One of the most exciting challenges of present-day surface science is the task of developing a detailed microscopic picture of surface chemical reactions. This task involves understanding the intra- and inter-molecular motions of species, as they undergo chemical change at a surface, and understanding the related issues of the energy requirements, energy flow, and energy disposal for these microscopic interactions. Studies directed at describing atomic and molecular motion and the interplay between molecular motion and energy throughout a surface process, such as chemisorption, physisorption, or scattering, define the field of surface chemical dynamics. The descriptions acquired from studies of surface dynamics can range from simple conceptual models, which yield insight into qualitative aspects of molecular interactions, to detailed theories, which provide quantitative information about dynamical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Miller: Recent advances in quantum mechanical reactive scattering theory. Annu. Rev. Phys. Chem., ed. by H.L. Strauss (Annual Reviews, Palo Alto, CA, 1990) Vol 41

    Google Scholar 

  2. Although there is no evidence for a molecular chemisorbed state of hydrogen on a copper surface, H2 has been found to physisorb to Cu(100), with a binding energy of ~ 20 meV

    Google Scholar 

  3. J.B.A. Dumas: Ann. de Chim. et de Phys. III 8, 189 (1843)

    Google Scholar 

  4. H.S. Taylor: J. Am. Chem. Soc. 53, 578 (1931)

    CAS  Google Scholar 

  5. J.E. Lennard-Jones: Trans. Faraday Soc. 28, 333 (1932)

    CAS  Google Scholar 

  6. W.G. Pollard: Phys Rev. 56, 324 (1939)

    CAS  Google Scholar 

  7. A.F. H. Ward: Proc. Roy. Soc. A 133, 506 (1931)

    CAS  Google Scholar 

  8. R.A. Beebe, G.W. Low, E.L. Lincoln, S. Goldwasser: J. Am Chem. Soc 57, 2527 (1935)

    CAS  Google Scholar 

  9. W. Hampe: Z. Anal. Chem. 13, 352 (1874)

    Google Scholar 

  10. A. Sieverts: Z. Physik. Chem. 77, 591 (1911)

    Google Scholar 

  11. H.S. Taylor, R.M. Burns: J. Am. Chem. Soc 43, 1273 (1921)

    CAS  Google Scholar 

  12. W.E. Garner, F.E.T. Kingman: Nature 126, 352 (1930)

    CAS  Google Scholar 

  13. J.A. Allen, J.W. Mitchell: Disc. Faraday Soc. 8, 360 (1950)

    Google Scholar 

  14. O. Beeck: Disc. Faraday Soc. 8, 118 (1950)

    Google Scholar 

  15. B.M.W. Trapnell: Proc. Roy. Soc. A 218, 566 (1953)

    CAS  Google Scholar 

  16. G.C.A. Schuit, L.L. van Reijen: Adv. in Catalysis (Academic, New York (1958) p. 242

    Google Scholar 

  17. J. Pritchard, F.C. Tompkins: Trans. Faraday Soc. 56, 540 (1960)

    CAS  Google Scholar 

  18. D.O. Hayward, B.M.W. Trapnell: Chemisorption (Butterworths, London 1964)

    Google Scholar 

  19. R.N. Lee, H.E. Farnsworth: Surf. Sci. 3, 461 (1965)

    CAS  Google Scholar 

  20. D.A. Cadenhead, N.J. Wagner: J. Phys. Chem. 72, 2775 (1968)

    CAS  Google Scholar 

  21. O. Leypunsky: Acta Physicochim URSS 5, 271 (1936)

    Google Scholar 

  22. P.B. Rasmussen, P.M Holmblad, H. Christoffersen, P.A. Taylor, I. Chorkendorff: Surf. Sci., 287, 79 (1993)

    Google Scholar 

  23. A.V. Hamza, R.J. Madix: J. Phys. Chem. 89, 5381 (1985)

    CAS  Google Scholar 

  24. K.D. Rendulic, G. Anger, A. Winkler: Surf. Sci. 208, 404 (1989)

    CAS  Google Scholar 

  25. A.C. Luntz, J.K. Brown, M.D. Williams: J. Chem. Phys. 93, 5240 (1990)

    CAS  Google Scholar 

  26. H.W. Melville, E.K. Rideal: Proc. Roy. Soc. A 153, 77 (1936)

    Google Scholar 

  27. G. Rienäcker, B. Sarry: Z. Anorg. Chem. 257, 41 (1948)

    Google Scholar 

  28. A. Couper, D.D. Eley: Disc. Faraday Soc. 8, 172 (1950)

    Google Scholar 

  29. J. Harris, S. Andersson: Phys. Rev. Lett. 55, 1583 (1985)

    CAS  Google Scholar 

  30. T. Kwan: Bull. Chem. Soc. Jpn. 23, 73 (1950)

    CAS  Google Scholar 

  31. M. Balooch, M.J. Cardillo, D.R. Miller, R.E. Stickney: Surf. Sci. 46, 358 (1974)

    CAS  Google Scholar 

  32. C.T. Rettner, L.A. DeLouise, D.J. Auerbach: J. Chem. Phys. 85, 1131 (1986)

    CAS  Google Scholar 

  33. C.T. Rettner, H.E. Pfnür, D.J. Auerbach: Phys. Rev. Lett. 54, 2716 (1985)

    CAS  Google Scholar 

  34. M.B. Lee, Q.Y. Yang, S.T. Ceyer: J. Chem. Phys. 87, 2724 (1987)

    CAS  Google Scholar 

  35. A.V. Hamza, H.-P. Steinrück, R.J. Madix: J. Chem. Phys. 86, 6506 (1987)

    CAS  Google Scholar 

  36. A.C. Luntz, D.S. Bethune: J. Chem. Phys. 90, 1274 (1989)

    CAS  Google Scholar 

  37. G.R. Schoofs, C.R. Arumainayagam, M.C. McMaster, R.J. Madix: Surf. Sci. 215, 1 (1989)

    CAS  Google Scholar 

  38. J. Harris: Surf. Sci. 221, 335 (1989)

    CAS  Google Scholar 

  39. T.L. Bradley, R.E. Stickney: Surf. Sci. 38, 313 (1973)

    CAS  Google Scholar 

  40. M. Balooch, R.E. Stickney: Surf. Sci. 44, 310 (1974)

    CAS  Google Scholar 

  41. M.J. Cardillo, M. Balooch, R.E. Stickney: Surf. Sci. 50, 263 (1975)

    CAS  Google Scholar 

  42. More Information about the principle of detailed balance can be found in a review written by G. Comsa, R. David: Surf. Sci. Rept. 5, 145 (1985)

    CAS  Google Scholar 

  43. G. Comsa: J. Chem. Phys. 48, 3235 (1968)

    CAS  Google Scholar 

  44. W. Van Willigen: Phys. Lett. 28A, 80 (1968)

    Google Scholar 

  45. R.L. Palmer, J.N. Smith, Jr., H. Saltsburg, D.R. O’Keefe: J. Chem. Phys. 53, 1666, (1970)

    CAS  Google Scholar 

  46. R.L. Palmer, D.R. O’Keefe: Appl. Phys. Lett. 16, 529 (1970)

    CAS  Google Scholar 

  47. G. Comsa, R. David: Surf. Sci 117, 77 (1982)

    CAS  Google Scholar 

  48. G.D. Kubiak, G.O. Sitz, R.N. Zare: J. Chem. Phys. 83, 2538 (1985)

    CAS  Google Scholar 

  49. J.C. Polanyi, W.H. Wong: J. Chem. Phys. 51, 1439 (1969)

    CAS  Google Scholar 

  50. D. Halstead, S. Holloway: J. Chem. Phys. 93, 2859 (1990)

    CAS  Google Scholar 

  51. S. Holloway: J. Phys, Condens, Matter 3, S43–S54 (1991)

    CAS  Google Scholar 

  52. J. Harris, S. Holloway, T.S. Rahman, K. Yang: J. Chem. Phys. 89, 4427 (1988)

    CAS  Google Scholar 

  53. G. Anger, A. Winkler, K.D. Rendulic: Surf. Sci. 220, 1 (1989)

    CAS  Google Scholar 

  54. B.E. Hayden, C.L.A. Lamont: Chem. Phys. Lett. 160, 331 (1989)

    CAS  Google Scholar 

  55. In the jellium model the semi-infinite positive ion lattice is represented by a uniform positive background charge and an associated electron density profile extending into the vacuum region, which creates an electrostatic surface dipole

    Google Scholar 

  56. P.K. Johansson: Surf. Sci. 104, 510 (1981)

    CAS  Google Scholar 

  57. P. Madhaven, J.L. Whitten: J. Chem. Phys. 77, 2673 (1982)

    Google Scholar 

  58. P.E.M. Siegbahn, M.R.A. Blomberg, C.W. Bauschlicher: J. Chem. Phys. 81, 1373 (1984)

    CAS  Google Scholar 

  59. M.R. Hand, S. Holloway: J. Chem. Phys. 91, 7209 (1989)

    CAS  Google Scholar 

  60. C.T. Rettner, H.E. Pfnür, H. Stein, D.J. Auerbach: J. Vac. Sci. Tech. 6, 899 (1988)

    CAS  Google Scholar 

  61. C.T. Rettner, H.E. Pfufir, D.J. Auerbach: J. Chem. Phys. 84, 4163 (1986)

    CAS  Google Scholar 

  62. S.T. Ceyer, J.D. Beckerle, M.B. Lee, S.L. Tang, Q.Y. Yang, M.A. Hines: J. Vac. Sci. Technol. A 5, 501, (1987)

    CAS  Google Scholar 

  63. C.T. Rettner, H. Stein: J. Chem. Phys. 87, 770 (1987)

    CAS  Google Scholar 

  64. M.R. Hand, S. Holloway: Surf. Sci. 211/212, 940 (1989)

    Google Scholar 

  65. H.A. Michelsen, D.J. Auerbach: Phys. Rev. Lett. 65, 2833 (1990)

    CAS  Google Scholar 

  66. H.A. Michelsen, D.J. Auerbach: J. Chem. Phys. 94, 7502 (1991)

    CAS  Google Scholar 

  67. M.P. D’Evelyn, A.V. Hamza, G.E. Gdowski, R.J. Madix: Surf. Sci. 167, 451 (1986)

    Google Scholar 

  68. J. Harris, J. Simon, A.C. Luntz, C.B. Mullins, C.T. Rettner: Phys. Rev. Lett. 67, 652 (1991)

    CAS  Google Scholar 

  69. H.F. Berger, M. Leisch, A. Winkler, K.D. Rendulic: Chem. Phys. Lett. 175, 425 (1990)

    CAS  Google Scholar 

  70. H.F. Berger, K.D. Rendulic: Surf. Sci. 253, 325 (1991)

    CAS  Google Scholar 

  71. B.E. Hayden, C.L.A. Lamont: Surf. Sci. 243, 31 (1991)

    CAS  Google Scholar 

  72. C.T. Rettner, D.J. Auerbach, H.A. Michelsen: Phys. Rev. Lett. 68, 1164 (1992)

    CAS  Google Scholar 

  73. R.J. Gallagher, J.B. Fenn: J. Chem. Phys. 60, 3492 (1974)

    CAS  Google Scholar 

  74. J.B. Anderson, R.P. Andres, J.B. Fenn: High intensity and high energy molecular beams, in Advances in Atomic and Molecular Physics, ed. by D. R. Bates, I. Estermann (Academic, New York 1965) Vol. 1

    Google Scholar 

  75. B.E. Hayden, C.L.A. Lamont: Phys. Rev. Lett. 63, 1823 (1989)

    CAS  Google Scholar 

  76. J.E. Müller: Surf. Sci. 272, 45 (1992)

    Google Scholar 

  77. J.K. Nørskov: J. Chem. Phys. 90, 7461 (1989)

    Google Scholar 

  78. S. Holloway: Quantum effects in gas-solid interactons, in Dynamics of Gas-surface Collisions, ed. by C.T. Rettner, M.N.R. Ashfold (Royal Soc. Chemistry, Cambridge, 1991)

    Google Scholar 

  79. S. Küchenhoff, W. Brenig, Y. Chiba: Surf. Sci. 245, 389 (1991)

    Google Scholar 

  80. D.J. Auerbach, C.T. Rettner, H.A. Michelsen: Surf. Sci. 283, 1 (1993)

    CAS  Google Scholar 

  81. C.T. Rettner, H.A. Michelsen, DJ. Auerbach, C.B. Mullins: J. Chem. Phys. 94, 7499 (1991)

    CAS  Google Scholar 

  82. M.R. Hand, J. Harris: J. Chem. Phys. 92, 7610 (1990)

    CAS  Google Scholar 

  83. A.C. Luntz, J. Harris: Surf. Sci. 258, 397 (1991)

    CAS  Google Scholar 

  84. H.F. Winters: J. Chem. Phys. 62, 2454 (1975)

    CAS  Google Scholar 

  85. T.-C. Lo, G. Ehrlich: Surf. Sci. 179, L19 (1987)

    CAS  Google Scholar 

  86. S.G. Brass, G. Ehrlich: Surf. Sci. 187, 21 (1987)

    CAS  Google Scholar 

  87. T.P. Beebe, Jr., D.W. Goodman, B.D. Kay: J. Chem. Phys. 87, 2305 (1987)

    CAS  Google Scholar 

  88. I. Chorkendorff, I. Alstrup, S. Ullmann: Surf. Sci. 227, 291 (1990)

    CAS  Google Scholar 

  89. H.A. Michelsen, C.T. Rettner, DJ. Auerbach: Surf. Sci. 272, 65 (1992)

    CAS  Google Scholar 

  90. A. Hodgson, J. Moryl, H. Zhao: Chem. Phys. Lett. 182, 152 (1991)

    CAS  Google Scholar 

  91. J.P. Cowin, C.-J. Yu, SJ. Sibener, J.E. Hurst: J. Chem. Phys. 75, 1033 (1981)

    CAS  Google Scholar 

  92. J. Lapujoulade, Y. Le Cruer, M. Lefort, Y. Lejay, E. Maurel: Surf. Sci. 103, L85 (1981)

    CAS  Google Scholar 

  93. G. Boato, P. Cantini, R. Tatarek: J. Phys. F. 6, L237 (1976)

    CAS  Google Scholar 

  94. A. Hodgson, J. Moryl, P. Traversaro, H. Zhao: Nature 356, 502 (1992)

    Google Scholar 

  95. C.T. Rettner, DJ. Auerbach, H.A. Michelsen: Phys. Rev. Lett. 68, 2547 (1992)

    CAS  Google Scholar 

  96. G.R. Darling, S. Holloway: J. Chem. Phys. 97, 734 (1992)

    CAS  Google Scholar 

  97. H.A. Michelsen, C.T. Rettner, DJ. Auerbach: Phys. Rev. Lett. 69, 2678 (1992)

    CAS  Google Scholar 

  98. H.A. Michelsen, C.T. Rettner, DJ. Auerbach, R.N. Zare: J. Chem. Phys. 98, 8294 (1993)

    CAS  Google Scholar 

  99. L. Schröter, G. Ahlers, H. Zacharias, R. David: J. Electr. Spectr. Rel. Phen. 45, 403 (1987)

    Google Scholar 

  100. L. Schröter, Ch. Trame, R. David, H. Zacharias: Surf. Sci. 272, 229 (1992)

    Google Scholar 

  101. R.W. Minck, R.W. Terhune, W.G. Rado: Appl. Phys. Lett. 3, 181 (1963)

    CAS  Google Scholar 

  102. P. Lallemand, P. Simova: J. Molec. Spect. 26, 262 (1968)

    CAS  Google Scholar 

  103. R.L. Farrow, D.W. Chandler: J. Chem. Phys. 89, 1994 (1988)

    CAS  Google Scholar 

  104. J. Arnold, T. Dreier, D.W. Chandler: Chem. Phys. 133, 123 (1989)

    CAS  Google Scholar 

  105. A. Cruz, B. Jackson: J. Chem. Phys. 94, 5715 (1991)

    CAS  Google Scholar 

  106. U. Nielsen, D. Halsted, S. Holloway, J. K Norskov; J. Chem, Phys. 93, 2879 (1990)

    CAS  Google Scholar 

  107. S. Holloway, B. Jackson: Chem. Phys. Lett. 172, 40 (1990)

    CAS  Google Scholar 

  108. X.Y. Chang, S. Holloway: Surf. Sci. 251, 935 (1991)

    Google Scholar 

  109. G. Engdahl, B.I. Lundqvist, U. Nielsen, J.K. Nørskov: Phys. Rev. B, 45, 11362 (1992)

    CAS  Google Scholar 

  110. J.M. Campbell, M.E. Domagała, C.T. Campbell: J. Vac. Sci. Technol A 9, 1693 (1991)

    CAS  Google Scholar 

  111. T. Kwan, T. Izu: Catalyst 4, 28 (1948)

    Google Scholar 

  112. T. Kwan: J. Res. Inst. Catalysis 1, 95 (1949)

    CAS  Google Scholar 

  113. R. J. Mikovsky, M. Boudart, H.S. Taylor: J.Am. Chem. Soc. 76, 3814 (1954)

    CAS  Google Scholar 

  114. G. Rienäcker, G. Vormum: Z. Anorg. Chem. 283, 287 (1956)

    Google Scholar 

  115. D.D. Eley, D.R. Rossington: The parahydrogen conversion on copper, silver, and gold, in Chemisorption, ed. by W.E. Garner (Butterworths., London 1956)

    Google Scholar 

  116. J. Völter, H. Jungnickel, G. Rienäcker: Z. Anorg. Chem. 360, 300 (1968)

    Google Scholar 

  117. D.A. Cadenhead, N.J. Wagner: J. Catalysis 21, 312 (1971)

    CAS  Google Scholar 

  118. CS. Alexander, J. Pritchard: J. Chem. Soc. Faraday Trans. I, 68, 202 (1972)

    CAS  Google Scholar 

  119. M. Kiyomiya, N. Momma, I. Yasumori: Buli. Chem. Soc. Jpn. 47, 1852 (1974)

    CAS  Google Scholar 

  120. I.E. Gabis, A.A. Kurdyumov, S.N. Mazaev: Poverkhnost 12, 26 (1987)

    Google Scholar 

  121. R.B. Bernstein: Chemical Dynamics via Molecular Beam and Laser Techniques (Oxford Univ. Press. New York (1982)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michelsen, H.A., Rettner, C.T., Auerbach, D.J. (1994). The Adsorption of Hydrogen at Copper Surfaces: A Model System for the Study of Activated Adsorption. In: Madix, R.J. (eds) Surface Reactions. Springer Series in Surface Sciences, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78746-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78746-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78748-5

  • Online ISBN: 978-3-642-78746-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics