Glacial-Holocene Paleoproductivity off Western Australia: A Comparison of Proxy Records

  • D. C. McCorkle
  • H. H. Veeh
  • D. T. Heggie
Part of the NATO ASI Series book series (volume 17)


We compare paleoproductivity proxy records from a set of gravity cores from the Exmouth Plateau (≈ 19°S, 113°E, 950 to 2250 m) and the Perth Basin (≈ 27°S, 111°E, 2750 m) in the southeastern Indian Ocean. In general, these proxies indicate higher surfaceocean productivity in this region at the Last Glacial Maximum (LGM, isotope Stage 2). LGM sediment accumulation rates and the accumulation rates of biogenic sediment components (CaCO3 and organic carbon) are a factor of 1.5 to 2 higher than Holocene values. Benthic foraminiferal abundances and accumulation rates are both higher in glacial sediments, as are the concentrations and accumulation rates of authigenic uranium in the sediments. These benthic foraminiferal abundance and authigenic uranium data suggest higher surface ocean productivity during the glacial, but we cannot yet relate them to carbon flux quantitatively. In contrast to these three approaches, a productivity proxy based on paired-species benthic foraminiferal δ13C differences shows little glacial-Holocene change. Possible explanations for this disagreement are discussed.

Together, the data suggest that the glacial productivity off Western Australia was elevated relative to Holocene values, and support the hypothesis that a north-flowing west Australian current led to coastal upwelling and enhanced primary productivity off western Australia during the Last Glacial Maximum. However, glacial productivity was high only relative to the low productivity characteristic of this region in the modern ocean. We see no evidence of strong upwelling similar to that observed in the modern ocean off the southwestern coasts of Africa and South America.


Accumulation Rate Carbon Flux Benthic Foraminifera Sediment Accumulation Rate Mass Accumulation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altenbach, A.V., 1992. Short term processes and patterns in the foraminiferal response to organic flux rates. Mar. Micropaleontol., vol. 19, pp. 119–129.CrossRefGoogle Scholar
  2. Altenbach, A.V., and M. Sarnthein, 1989. Productivity record in benthic foraminifera, in, W.H. Berger, V.S. Smetacek, and G. Wefer (eds.), Productivity of the Ocean: Present and Past. Wiley, New York, pp. 255–269.Google Scholar
  3. Anderson, R.F., 1982. Concentration, vertical flux, and remineralization of particulate uranium in seawater. Geochim. Cosmochim. Acta, vol. 46, pp. 1293–1299.CrossRefGoogle Scholar
  4. Anderson, R.F., A.P. Lehuray, M.Q. Fleisher, and J.W. Murray, 1989. Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochim. Cosmochim. Acta, vol. 53, pp. 2205–2213.CrossRefGoogle Scholar
  5. Arrhenius, G., 1952. Sediment cores from the east Pacific, Rep. Swed. Deep Sea Exped. 1947–1948, no. 5, 228 p.Google Scholar
  6. Barnes, C.E. and J.K. Cochran, 1990. Uranium removal in oceanic sediments and the oceanic U balance. Earth Planet. Sci. Lett., vol. 97, pp. 94101.CrossRefGoogle Scholar
  7. Belanger, P.E., W.B. Curry, and R.K. Matthews, 1981. Core-top evaluation of benthic foraminiferal isotopic ratios for paleoceanographic interpretations. Palaeogeogr., Palaeoclimatol., Palaeoecol., vol. 33, pp. 205–220.CrossRefGoogle Scholar
  8. Berger, W.H., 1973. Deep-sea carbonates: Pleistocene dissolution cycles. Jour. Foram. Res., vol. 3, pp. 187–195.CrossRefGoogle Scholar
  9. Berger, W.H., M.-C. Bonneau, and F.L. Parker, 1982. Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanolog. Acta, vol. 5, pp. 249–258.Google Scholar
  10. Berger, W.H., K. Fischer, C. Lai, and G. Wu, 1987. Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. Scripps Institution of Oceanography Ref. 87–30:1.Google Scholar
  11. Berger, W.H., V.S. Smetacek, and G. Wefer, 1989. Ocean productivity and paleoproductivity — an overview, in Productivity of the Ocean: Present and Past, Berger, W.H., V.S. Smetacek, and G. Wefer, eds., John Wiley and Sons, pp. 1–34.Google Scholar
  12. Berger, W.H., and G. Wefer, 1990. Export production: seasonality and intermittency, and paleoceanographic implications. Paleogeogr. Paleoclimatol. Paleoecol., 89, 245–254.CrossRefGoogle Scholar
  13. Berger, W.H. and J.C. Herguera, 1992. Reading the sedimentary record of the ocean’s productivity, in Primary Productivity and Biogeochemical Cycles in the Sea, P.G. Falkowski and A.D. Woodhead, eds., Plenum Press, pp. 455–486.Google Scholar
  14. Boyle, E.A., 1988a. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature, vol. 331, pp. 55–56.CrossRefGoogle Scholar
  15. Boyle, E.A., 1988b. The role of vertical chemical fractionation in controlling Late Quaternary atmospheric carbon dioxide. J. Geophys. Res., vol 93, no. C12, pp. 15701–15714.CrossRefGoogle Scholar
  16. Broecker, W.S. (1982) Ocean chemistry during glacial time. Geochim. Cosmochim. Acta, 46, pp.1689–1705.CrossRefGoogle Scholar
  17. Broecker, W.S., and T. Takahashi, 1978. The relationship between lysocline depth and in situ carbonate ion concentration, Deep Sea Res., vol. 25, pp. 65–95.Google Scholar
  18. Broecker, W.S., and T-.H. Peng, 1987. The role of CaCO3 compensation in the glacial to interglacial atmosphere CO2 change, Global Biogeochemical Cycles, vol. 1, no. 1, pp. 15–29.CrossRefGoogle Scholar
  19. Broecker, W.S., and T.-H. Peng, 1989. The cause of the Glacial to Interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochemical Cycles, v. 3, n. 3, pp. 215–239.CrossRefGoogle Scholar
  20. Choi, D.R., H.M.J. Stagg, and others, 1987. Rig Seismic research cruise 6: northern Australia heat flow — post-cruise report. Australian Bureau of Mineral Resources, Canberra, Report 274, 40 pp.Google Scholar
  21. CLIMAP, 1976. The surface of the Ice Age Earth, Science, vol. 191, pp. 1131–1137.CrossRefGoogle Scholar
  22. Colley, S. and J. Thomson, 1985. Recurrent uranium relocations in distal turbidites emplaced in pelagic conditions. Geochim. Cosmochim. Acta, vol. 49, pp. 2339–2348.CrossRefGoogle Scholar
  23. Corliss, B.H., 1985. Microhabitats of benthic foraminifera within deep-sea sediments, Nature, vol. 314, pp. 435–438.CrossRefGoogle Scholar
  24. Cruikshank, B.I. and J.G. Pyke, 1993. Analytical methods used in the Minerals and Land Use Program’s Geochemical Laboratory. Australian Geological Survey Organisation Record 1993/26.Google Scholar
  25. Corliss, B.H., and S. Emerson, 1990. Distribution of rose bengal stained deep-sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine. Deep-Sea Res., vol. 37, n. 3, pp. 381–400.CrossRefGoogle Scholar
  26. Curry, W.B., and G.P. Lohmann, 1985. Carbon deposition rates and deep water residence time in the equatorial Atlantic Ocean throughout the last 160,000 years, in, T. E. Sundquist., and S. W. Broecker. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington DC, pp. 285–301.CrossRefGoogle Scholar
  27. Duplessy, J.C., N.J. Shackleton, R.G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel, 1988. Deep water source variations during the last climatic cycle and their impact on the global deep water circulation. Paleoceeanography, vol. 3, no. 3, pp. 343–360.CrossRefGoogle Scholar
  28. Dymond, J., and M. Lyle, 1985. Flux comparisons between sediments and sediment traps in the eastern tropic Pacific: Implications for atmospheric CO2 variations during the Pleistocene, Limnol. Oceanogr., vol. 30 no. 4, pp. 699–712.CrossRefGoogle Scholar
  29. Emerson, S., and M. Bender, 1981. Carbon fluxes at the sediment water interface of the deep sea: calcium carbonate preservation. J. Mar. Res., vol. 39, no. 1, pp. 139–162.Google Scholar
  30. Emerson, S., 1985. Organic carbon preservation in marine sediments, in, E.T. Sundquist, and W.S. Broecker (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington DC, pp. 78–87.CrossRefGoogle Scholar
  31. Emerson, S., and J.I. Hedges, 1988. Processes controlling the organic carbon content of open ocean sediments, Paleoceanography, vol. 3, no. 5, pp. 621–634.CrossRefGoogle Scholar
  32. Emerson, S.R., and D. Archer, 1990. Calcium carbonate preservation in the ocean. Phil. Trans. R. Soc. Lond., vol. A331, pp. 29–40.CrossRefGoogle Scholar
  33. Farrell, J.W., and W.L. Prell, 1989. Climatic change and CaCO3 preservation; an 800,000 year bathymetric reconstruction from the Central Equatorial Pacific Ocean. Paleoceanography, vol. 4, no. 4, pp. 447–466.CrossRefGoogle Scholar
  34. Haq, B.U., U. von Rad, and ODP Leg 122 Shipboard Scientific Party, 1990. Proc. ODP, Ink. Repts. 122. Ocean Drilling Program, College Station, TX, pp.9–15.CrossRefGoogle Scholar
  35. Keir, R.S., 1989. Paleoproduction and atmospheric CO2 based on ocean modeling, in, W.H. Berger, V.S. Smetacek, and G. Wefer (eds.), Productivity of the Ocean: Present and Past. Wiley, New York, pp. 377–394.Google Scholar
  36. Klinkhammer, G.P. and M.R. Palmer, 1991. Uranium in the oceans: where it goes and why. Geochim. Cosmochim. Acta, vol. 55, pp. 1799–1806.CrossRefGoogle Scholar
  37. Knox, F., and M.B. McElroy, 1984. Changes in atmospheric CO2: influence of the marine biota at high latitude, J. Geophys. Res., vol. 89, pp. 4629–4637.CrossRefGoogle Scholar
  38. Kolla, V., and P.E. Biscaye, 1977. Distribution and origin of quartz in the sediments of the Indian Ocean, J. Sed. Pet., vol. 47 n. 2, pp. 642–649.Google Scholar
  39. Lutze, G.-F. and H. Thiel, 1987. Cibicidoides wuellerstorfi and Planulina ariminensis, elevated epibenthic foraminifera. Univ. of Kiel, Ber. Sonderforschungsbereich 313, vol. 6, pp. 17–30.Google Scholar
  40. Lyle, M., D.W. Murray, B.P. Finney, J. Dymond, J.M. Robbins, and K. Brooksforce, 1987. The record of Late Pleistocene biogenic sedimentation in the Eastern Tropical Pacific Ocean. Paleoceanography, vol. 5, pp. 15–41.CrossRefGoogle Scholar
  41. Lyle, M., R. Zahn, F. Prahl, J. Dymond, R. Collier, N. Pisias, and E. Suess, 1992. Paleoproductivity and carbon burial across the California Current: the Multitracers transect, 42°N. Paleoceanography, vol. 7, pp. 251–272.CrossRefGoogle Scholar
  42. McCorkle, D.C., 1987. Stable carbon isotopes in deep sea pore waters: modern geochemistry and paleoceanographic applications. Ph. D. Dissertation, University of Washington, Seattle, WA, 209 pp.Google Scholar
  43. McCorkle, D.C., S.R. Emerson, and P.D. Quay, 1985. Stable carbon isotopes in marine porewaters. Earth Planet. Sci. Lett., 74, 13–26.CrossRefGoogle Scholar
  44. McCorkle, D.C., L.D. Keigwin, B.H. Corliss, and S.R. Emerson, 1990. The influence of microhabitats on the carbon isotopic composition of deepsea benthic foraminifera. Paleoceanography, vol. 5, pp. 161–185.CrossRefGoogle Scholar
  45. McCorkle, D.C. and L.D. Keigwin. Depth profiles of δ13C in bottom water and core-top C. wuellerstorfi on the Ontong-Java Plateau and Emperor Seamounts. in press, Paleoceanography.Google Scholar
  46. McCorkle, D.C, H.H. Veeh, and D.T. Heggie, 1992. LGM and Holocene δ13C profiles from the Indian Ocean off Western Australia. Fourth International Conference on Paleoceanography (ICP-IV), pp. 194.Google Scholar
  47. Mix, A.C., 1989. Pleistocene paleoproductivity: evidence from organic carbon and foraminiferal species, in, W.H. Berger, V.S. Smetacek, and G. Wefer (eds.), Productivity of the Ocean: Present and Past. Wiley, New York, pp. 313–340.Google Scholar
  48. Müller, PJ., and E. Suess, 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans -I. Organic carbon preservation, Deep Sea Res., vol. 26A, pp. 1347–1362.Google Scholar
  49. Müller, P.J., H. Erlenkeuser, and R. von Grafenstein, 1983. Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores, in, J. Thiede, and E. Suess (eds.), Coastal Upwelling, its sediment record. Plenum Presss, New York, pp. 365–398.Google Scholar
  50. Pedersen, T.F., 1983. Increased productivity in the eastern equatorial Pacific during the Last Glacial Maximum (19,000–14,000 yr. B.P.), Geology, vol. 11, pp. 16–19.CrossRefGoogle Scholar
  51. Pedersen, T.F., M. Pickering, J.S. Vogel, J.N. Southon, and D.E. Nelson, 1988. The response of benthic foraminifera to productivity cycles in the Eastern Equatorial Pacific: faunal and geochemical constraints on glacial bottom-water oxygen levels, Paleoceanography, v. 3, pp. 157–168.CrossRefGoogle Scholar
  52. Peterson, L.C., and W. Prell, 1985a. Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: preservation patterns and carbonate loss above the lysocline, Mar. Geol., vol. 64, pp. 259–290.CrossRefGoogle Scholar
  53. Peterson, L.C., and W.L. Prell, 1985b. Carbonate preservation and rates of climatic change: an 800 kyr record from the Indian Ocean, in, T. E. Sundquist., and S. W. Broecker. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington DC, pp. 251–269.CrossRefGoogle Scholar
  54. Prell, W.L., W.H. Hutson, D.F. Williams, A.W.H. Be, K. Geitzenauer, and B. Molfino, 1980. Surface circulation of the Indian Ocean during the Last Glacial Maximum, approximately 18000 yr BP, Quat. Res., vol. 14, pp. 309–336.CrossRefGoogle Scholar
  55. Prell, W.L., 1982. Reply to comments by P.J. Webster and N.A. Streten regarding “Surface circulation of the Indian Ocean during the Last Glacial Maximum, approximately 18000 YBP”, Quat. Res., vol. 17, pp. 128–131.CrossRefGoogle Scholar
  56. Prell, W.L. 1985. The stability of low-latitude sea-surface temperatures: An evaluation of the CLIMAP reconstructoin with emphasis on the positive SST anomalies. D.O.E. Tech. Report, 60 pp.Google Scholar
  57. Santschi, P.H., C. Bajo, M. Mantovani, D. Orciuolo, R.E. Cranston, and J. Bruno, 1988. Uranium in pore waters from North Atlantic (GME and Southern Nares Abyssal Plain) sediments. Nature, vol. 331, pp. 155–157.CrossRefGoogle Scholar
  58. Sarmiento, J.L., and J.R. Toggweiler, 1984. A new model for the role of the oceans in determining atmospheric pCO2, Nature, vol. 308, pp. 621–623.CrossRefGoogle Scholar
  59. Sarnthein, M., K. Winn, and R. Zahn, 1987. Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during deglaciation times, in Abrupt Climate Change, Proceedings of the NATO/NSF A.R.W. Symposium at Biviers/Grenoble, 1985. W.H. Berger and L.D. Labeyrie, eds. pp. 311–337.Google Scholar
  60. Sarnthein, M., K. Winn, J.-C. Duplessy, and M.R. Fontugne, 1988. Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography, vol. 3, pp. 361–399.CrossRefGoogle Scholar
  61. Shackleton, N.J. 1977. Carbon-13 in Uvigerina: tropical rainforest history and the Equatorial Pacific carbonate dissolution cycles, in The Fate of Fossil Fuel CO2 in the Oceans, Andersen, N.R., and Malahoff, A. (Eds.). Plenum, New York. p. 401–427.Google Scholar
  62. Siegenthaler, U., and T. Wenk, 1984. Rapid atmospheric CO2 variations and ocean circulation, Nature, vol. 308, pp. 624–625.Google Scholar
  63. Thomson, J., H.E. Wallace, S. Colley, and J. Toole, 1990. Authigenic uranium in Atlantic sediments of the last glacial stage — a diagenetic phenomenon. Earth Planet. Sci. Lett., vol. 98, pp. 222–232.CrossRefGoogle Scholar
  64. Webster, P.J., and N.A. Streten, 1978. Late Quaternary ice age climates of tropical Australasia: interpretations and reconstructions, Quat. Res., vol. 10, pp. 279–309.CrossRefGoogle Scholar
  65. Webster, P.J., and N.A. Streten, 1982. Comments on: “Surface circulation of the Indian Ocean during the Last Glacial Maximum approximately 18000 yr BP” by Warren L Prell et al, Quat. Res., vol. 16, pp. 421–423.CrossRefGoogle Scholar
  66. Weliky, K., E. Suess, C.A. Ungerer, PJ. Müller, and K. Fischer, 1983. Problems with accurate carbon measurements in marine sediments and particulate matter in seawater: A new approach. Limnol. Oceanogr., vol. 28, pp. 1252–1259.CrossRefGoogle Scholar
  67. Wilson, T.R.S., J. Thomson, D.J. Hydes, S. Colley, F. Culkin, and J. Sorensen, 1986. Oxidation fronts in pelagic sediments: diagenetic formation of metal-rich layers, Science, vol. 232, pp. 972–975.CrossRefGoogle Scholar
  68. Woodruff, F., S.M. Savin, and R.G. Douglas, 1981. Miocene stable isotope record: a detailed deep Pacific Ocean study and its paleoclimatic implications. Science, vol. 212, pp. 665–668.CrossRefGoogle Scholar
  69. Woodruff, F., and S.M. Savin, 1985. δ13C values of Miocene Pacific benthic foramimfera: correlations with seal level and biological productivity, Geology, vol. 13, pp. 119–122.CrossRefGoogle Scholar
  70. Zahn, R., K. Winn, and M. Sarnthein, 1986. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi, Paleoceanography, vol. 1, 27–42.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • D. C. McCorkle
    • 1
  • H. H. Veeh
    • 2
    • 1
  • D. T. Heggie
    • 3
    • 1
  1. 1.Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.School of Earth SciencesFlinders UniversityAdelaideAustralia
  3. 3.Program in Marine Geosciences and Petroleum GeologyAustralian Geological Survey OrganizationCanberraAustralia

Personalised recommendations