Skip to main content

Glacial-Holocene Paleoproductivity off Western Australia: A Comparison of Proxy Records

  • Conference paper
Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change

Part of the book series: NATO ASI Series ((ASII,volume 17))

Abstract

We compare paleoproductivity proxy records from a set of gravity cores from the Exmouth Plateau (≈ 19°S, 113°E, 950 to 2250 m) and the Perth Basin (≈ 27°S, 111°E, 2750 m) in the southeastern Indian Ocean. In general, these proxies indicate higher surfaceocean productivity in this region at the Last Glacial Maximum (LGM, isotope Stage 2). LGM sediment accumulation rates and the accumulation rates of biogenic sediment components (CaCO3 and organic carbon) are a factor of 1.5 to 2 higher than Holocene values. Benthic foraminiferal abundances and accumulation rates are both higher in glacial sediments, as are the concentrations and accumulation rates of authigenic uranium in the sediments. These benthic foraminiferal abundance and authigenic uranium data suggest higher surface ocean productivity during the glacial, but we cannot yet relate them to carbon flux quantitatively. In contrast to these three approaches, a productivity proxy based on paired-species benthic foraminiferal δ13C differences shows little glacial-Holocene change. Possible explanations for this disagreement are discussed.

Together, the data suggest that the glacial productivity off Western Australia was elevated relative to Holocene values, and support the hypothesis that a north-flowing west Australian current led to coastal upwelling and enhanced primary productivity off western Australia during the Last Glacial Maximum. However, glacial productivity was high only relative to the low productivity characteristic of this region in the modern ocean. We see no evidence of strong upwelling similar to that observed in the modern ocean off the southwestern coasts of Africa and South America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach, A.V., 1992. Short term processes and patterns in the foraminiferal response to organic flux rates. Mar. Micropaleontol., vol. 19, pp. 119–129.

    Article  Google Scholar 

  • Altenbach, A.V., and M. Sarnthein, 1989. Productivity record in benthic foraminifera, in, W.H. Berger, V.S. Smetacek, and G. Wefer (eds.), Productivity of the Ocean: Present and Past. Wiley, New York, pp. 255–269.

    Google Scholar 

  • Anderson, R.F., 1982. Concentration, vertical flux, and remineralization of particulate uranium in seawater. Geochim. Cosmochim. Acta, vol. 46, pp. 1293–1299.

    Article  Google Scholar 

  • Anderson, R.F., A.P. Lehuray, M.Q. Fleisher, and J.W. Murray, 1989. Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochim. Cosmochim. Acta, vol. 53, pp. 2205–2213.

    Article  Google Scholar 

  • Arrhenius, G., 1952. Sediment cores from the east Pacific, Rep. Swed. Deep Sea Exped. 1947–1948, no. 5, 228 p.

    Google Scholar 

  • Barnes, C.E. and J.K. Cochran, 1990. Uranium removal in oceanic sediments and the oceanic U balance. Earth Planet. Sci. Lett., vol. 97, pp. 94101.

    Article  Google Scholar 

  • Belanger, P.E., W.B. Curry, and R.K. Matthews, 1981. Core-top evaluation of benthic foraminiferal isotopic ratios for paleoceanographic interpretations. Palaeogeogr., Palaeoclimatol., Palaeoecol., vol. 33, pp. 205–220.

    Article  Google Scholar 

  • Berger, W.H., 1973. Deep-sea carbonates: Pleistocene dissolution cycles. Jour. Foram. Res., vol. 3, pp. 187–195.

    Article  Google Scholar 

  • Berger, W.H., M.-C. Bonneau, and F.L. Parker, 1982. Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanolog. Acta, vol. 5, pp. 249–258.

    Google Scholar 

  • Berger, W.H., K. Fischer, C. Lai, and G. Wu, 1987. Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. Scripps Institution of Oceanography Ref. 87–30:1.

    Google Scholar 

  • Berger, W.H., V.S. Smetacek, and G. Wefer, 1989. Ocean productivity and paleoproductivity — an overview, in Productivity of the Ocean: Present and Past, Berger, W.H., V.S. Smetacek, and G. Wefer, eds., John Wiley and Sons, pp. 1–34.

    Google Scholar 

  • Berger, W.H., and G. Wefer, 1990. Export production: seasonality and intermittency, and paleoceanographic implications. Paleogeogr. Paleoclimatol. Paleoecol., 89, 245–254.

    Article  Google Scholar 

  • Berger, W.H. and J.C. Herguera, 1992. Reading the sedimentary record of the ocean’s productivity, in Primary Productivity and Biogeochemical Cycles in the Sea, P.G. Falkowski and A.D. Woodhead, eds., Plenum Press, pp. 455–486.

    Google Scholar 

  • Boyle, E.A., 1988a. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature, vol. 331, pp. 55–56.

    Article  Google Scholar 

  • Boyle, E.A., 1988b. The role of vertical chemical fractionation in controlling Late Quaternary atmospheric carbon dioxide. J. Geophys. Res., vol 93, no. C12, pp. 15701–15714.

    Article  Google Scholar 

  • Broecker, W.S. (1982) Ocean chemistry during glacial time. Geochim. Cosmochim. Acta, 46, pp.1689–1705.

    Article  Google Scholar 

  • Broecker, W.S., and T. Takahashi, 1978. The relationship between lysocline depth and in situ carbonate ion concentration, Deep Sea Res., vol. 25, pp. 65–95.

    Google Scholar 

  • Broecker, W.S., and T-.H. Peng, 1987. The role of CaCO3 compensation in the glacial to interglacial atmosphere CO2 change, Global Biogeochemical Cycles, vol. 1, no. 1, pp. 15–29.

    Article  Google Scholar 

  • Broecker, W.S., and T.-H. Peng, 1989. The cause of the Glacial to Interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochemical Cycles, v. 3, n. 3, pp. 215–239.

    Article  Google Scholar 

  • Choi, D.R., H.M.J. Stagg, and others, 1987. Rig Seismic research cruise 6: northern Australia heat flow — post-cruise report. Australian Bureau of Mineral Resources, Canberra, Report 274, 40 pp.

    Google Scholar 

  • CLIMAP, 1976. The surface of the Ice Age Earth, Science, vol. 191, pp. 1131–1137.

    Article  Google Scholar 

  • Colley, S. and J. Thomson, 1985. Recurrent uranium relocations in distal turbidites emplaced in pelagic conditions. Geochim. Cosmochim. Acta, vol. 49, pp. 2339–2348.

    Article  Google Scholar 

  • Corliss, B.H., 1985. Microhabitats of benthic foraminifera within deep-sea sediments, Nature, vol. 314, pp. 435–438.

    Article  Google Scholar 

  • Cruikshank, B.I. and J.G. Pyke, 1993. Analytical methods used in the Minerals and Land Use Program’s Geochemical Laboratory. Australian Geological Survey Organisation Record 1993/26.

    Google Scholar 

  • Corliss, B.H., and S. Emerson, 1990. Distribution of rose bengal stained deep-sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine. Deep-Sea Res., vol. 37, n. 3, pp. 381–400.

    Article  Google Scholar 

  • Curry, W.B., and G.P. Lohmann, 1985. Carbon deposition rates and deep water residence time in the equatorial Atlantic Ocean throughout the last 160,000 years, in, T. E. Sundquist., and S. W. Broecker. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington DC, pp. 285–301.

    Chapter  Google Scholar 

  • Duplessy, J.C., N.J. Shackleton, R.G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel, 1988. Deep water source variations during the last climatic cycle and their impact on the global deep water circulation. Paleoceeanography, vol. 3, no. 3, pp. 343–360.

    Article  Google Scholar 

  • Dymond, J., and M. Lyle, 1985. Flux comparisons between sediments and sediment traps in the eastern tropic Pacific: Implications for atmospheric CO2 variations during the Pleistocene, Limnol. Oceanogr., vol. 30 no. 4, pp. 699–712.

    Article  Google Scholar 

  • Emerson, S., and M. Bender, 1981. Carbon fluxes at the sediment water interface of the deep sea: calcium carbonate preservation. J. Mar. Res., vol. 39, no. 1, pp. 139–162.

    Google Scholar 

  • Emerson, S., 1985. Organic carbon preservation in marine sediments, in, E.T. Sundquist, and W.S. Broecker (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington DC, pp. 78–87.

    Chapter  Google Scholar 

  • Emerson, S., and J.I. Hedges, 1988. Processes controlling the organic carbon content of open ocean sediments, Paleoceanography, vol. 3, no. 5, pp. 621–634.

    Article  Google Scholar 

  • Emerson, S.R., and D. Archer, 1990. Calcium carbonate preservation in the ocean. Phil. Trans. R. Soc. Lond., vol. A331, pp. 29–40.

    Article  Google Scholar 

  • Farrell, J.W., and W.L. Prell, 1989. Climatic change and CaCO3 preservation; an 800,000 year bathymetric reconstruction from the Central Equatorial Pacific Ocean. Paleoceanography, vol. 4, no. 4, pp. 447–466.

    Article  Google Scholar 

  • Haq, B.U., U. von Rad, and ODP Leg 122 Shipboard Scientific Party, 1990. Proc. ODP, Ink. Repts. 122. Ocean Drilling Program, College Station, TX, pp.9–15.

    Book  Google Scholar 

  • Keir, R.S., 1989. Paleoproduction and atmospheric CO2 based on ocean modeling, in, W.H. Berger, V.S. Smetacek, and G. Wefer (eds.), Productivity of the Ocean: Present and Past. Wiley, New York, pp. 377–394.

    Google Scholar 

  • Klinkhammer, G.P. and M.R. Palmer, 1991. Uranium in the oceans: where it goes and why. Geochim. Cosmochim. Acta, vol. 55, pp. 1799–1806.

    Article  Google Scholar 

  • Knox, F., and M.B. McElroy, 1984. Changes in atmospheric CO2: influence of the marine biota at high latitude, J. Geophys. Res., vol. 89, pp. 4629–4637.

    Article  Google Scholar 

  • Kolla, V., and P.E. Biscaye, 1977. Distribution and origin of quartz in the sediments of the Indian Ocean, J. Sed. Pet., vol. 47 n. 2, pp. 642–649.

    Google Scholar 

  • Lutze, G.-F. and H. Thiel, 1987. Cibicidoides wuellerstorfi and Planulina ariminensis, elevated epibenthic foraminifera. Univ. of Kiel, Ber. Sonderforschungsbereich 313, vol. 6, pp. 17–30.

    Google Scholar 

  • Lyle, M., D.W. Murray, B.P. Finney, J. Dymond, J.M. Robbins, and K. Brooksforce, 1987. The record of Late Pleistocene biogenic sedimentation in the Eastern Tropical Pacific Ocean. Paleoceanography, vol. 5, pp. 15–41.

    Article  Google Scholar 

  • Lyle, M., R. Zahn, F. Prahl, J. Dymond, R. Collier, N. Pisias, and E. Suess, 1992. Paleoproductivity and carbon burial across the California Current: the Multitracers transect, 42°N. Paleoceanography, vol. 7, pp. 251–272.

    Article  Google Scholar 

  • McCorkle, D.C., 1987. Stable carbon isotopes in deep sea pore waters: modern geochemistry and paleoceanographic applications. Ph. D. Dissertation, University of Washington, Seattle, WA, 209 pp.

    Google Scholar 

  • McCorkle, D.C., S.R. Emerson, and P.D. Quay, 1985. Stable carbon isotopes in marine porewaters. Earth Planet. Sci. Lett., 74, 13–26.

    Article  Google Scholar 

  • McCorkle, D.C., L.D. Keigwin, B.H. Corliss, and S.R. Emerson, 1990. The influence of microhabitats on the carbon isotopic composition of deepsea benthic foraminifera. Paleoceanography, vol. 5, pp. 161–185.

    Article  Google Scholar 

  • McCorkle, D.C. and L.D. Keigwin. Depth profiles of δ13C in bottom water and core-top C. wuellerstorfi on the Ontong-Java Plateau and Emperor Seamounts. in press, Paleoceanography.

    Google Scholar 

  • McCorkle, D.C, H.H. Veeh, and D.T. Heggie, 1992. LGM and Holocene δ13C profiles from the Indian Ocean off Western Australia. Fourth International Conference on Paleoceanography (ICP-IV), pp. 194.

    Google Scholar 

  • Mix, A.C., 1989. Pleistocene paleoproductivity: evidence from organic carbon and foraminiferal species, in, W.H. Berger, V.S. Smetacek, and G. Wefer (eds.), Productivity of the Ocean: Present and Past. Wiley, New York, pp. 313–340.

    Google Scholar 

  • Müller, PJ., and E. Suess, 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans -I. Organic carbon preservation, Deep Sea Res., vol. 26A, pp. 1347–1362.

    Google Scholar 

  • Müller, P.J., H. Erlenkeuser, and R. von Grafenstein, 1983. Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores, in, J. Thiede, and E. Suess (eds.), Coastal Upwelling, its sediment record. Plenum Presss, New York, pp. 365–398.

    Google Scholar 

  • Pedersen, T.F., 1983. Increased productivity in the eastern equatorial Pacific during the Last Glacial Maximum (19,000–14,000 yr. B.P.), Geology, vol. 11, pp. 16–19.

    Article  Google Scholar 

  • Pedersen, T.F., M. Pickering, J.S. Vogel, J.N. Southon, and D.E. Nelson, 1988. The response of benthic foraminifera to productivity cycles in the Eastern Equatorial Pacific: faunal and geochemical constraints on glacial bottom-water oxygen levels, Paleoceanography, v. 3, pp. 157–168.

    Article  Google Scholar 

  • Peterson, L.C., and W. Prell, 1985a. Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: preservation patterns and carbonate loss above the lysocline, Mar. Geol., vol. 64, pp. 259–290.

    Article  Google Scholar 

  • Peterson, L.C., and W.L. Prell, 1985b. Carbonate preservation and rates of climatic change: an 800 kyr record from the Indian Ocean, in, T. E. Sundquist., and S. W. Broecker. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington DC, pp. 251–269.

    Chapter  Google Scholar 

  • Prell, W.L., W.H. Hutson, D.F. Williams, A.W.H. Be, K. Geitzenauer, and B. Molfino, 1980. Surface circulation of the Indian Ocean during the Last Glacial Maximum, approximately 18000 yr BP, Quat. Res., vol. 14, pp. 309–336.

    Article  Google Scholar 

  • Prell, W.L., 1982. Reply to comments by P.J. Webster and N.A. Streten regarding “Surface circulation of the Indian Ocean during the Last Glacial Maximum, approximately 18000 YBP”, Quat. Res., vol. 17, pp. 128–131.

    Article  Google Scholar 

  • Prell, W.L. 1985. The stability of low-latitude sea-surface temperatures: An evaluation of the CLIMAP reconstructoin with emphasis on the positive SST anomalies. D.O.E. Tech. Report, 60 pp.

    Google Scholar 

  • Santschi, P.H., C. Bajo, M. Mantovani, D. Orciuolo, R.E. Cranston, and J. Bruno, 1988. Uranium in pore waters from North Atlantic (GME and Southern Nares Abyssal Plain) sediments. Nature, vol. 331, pp. 155–157.

    Article  Google Scholar 

  • Sarmiento, J.L., and J.R. Toggweiler, 1984. A new model for the role of the oceans in determining atmospheric pCO2, Nature, vol. 308, pp. 621–623.

    Article  Google Scholar 

  • Sarnthein, M., K. Winn, and R. Zahn, 1987. Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during deglaciation times, in Abrupt Climate Change, Proceedings of the NATO/NSF A.R.W. Symposium at Biviers/Grenoble, 1985. W.H. Berger and L.D. Labeyrie, eds. pp. 311–337.

    Google Scholar 

  • Sarnthein, M., K. Winn, J.-C. Duplessy, and M.R. Fontugne, 1988. Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography, vol. 3, pp. 361–399.

    Article  Google Scholar 

  • Shackleton, N.J. 1977. Carbon-13 in Uvigerina: tropical rainforest history and the Equatorial Pacific carbonate dissolution cycles, in The Fate of Fossil Fuel CO2 in the Oceans, Andersen, N.R., and Malahoff, A. (Eds.). Plenum, New York. p. 401–427.

    Google Scholar 

  • Siegenthaler, U., and T. Wenk, 1984. Rapid atmospheric CO2 variations and ocean circulation, Nature, vol. 308, pp. 624–625.

    Google Scholar 

  • Thomson, J., H.E. Wallace, S. Colley, and J. Toole, 1990. Authigenic uranium in Atlantic sediments of the last glacial stage — a diagenetic phenomenon. Earth Planet. Sci. Lett., vol. 98, pp. 222–232.

    Article  Google Scholar 

  • Webster, P.J., and N.A. Streten, 1978. Late Quaternary ice age climates of tropical Australasia: interpretations and reconstructions, Quat. Res., vol. 10, pp. 279–309.

    Article  Google Scholar 

  • Webster, P.J., and N.A. Streten, 1982. Comments on: “Surface circulation of the Indian Ocean during the Last Glacial Maximum approximately 18000 yr BP” by Warren L Prell et al, Quat. Res., vol. 16, pp. 421–423.

    Article  Google Scholar 

  • Weliky, K., E. Suess, C.A. Ungerer, PJ. Müller, and K. Fischer, 1983. Problems with accurate carbon measurements in marine sediments and particulate matter in seawater: A new approach. Limnol. Oceanogr., vol. 28, pp. 1252–1259.

    Article  Google Scholar 

  • Wilson, T.R.S., J. Thomson, D.J. Hydes, S. Colley, F. Culkin, and J. Sorensen, 1986. Oxidation fronts in pelagic sediments: diagenetic formation of metal-rich layers, Science, vol. 232, pp. 972–975.

    Article  Google Scholar 

  • Woodruff, F., S.M. Savin, and R.G. Douglas, 1981. Miocene stable isotope record: a detailed deep Pacific Ocean study and its paleoclimatic implications. Science, vol. 212, pp. 665–668.

    Article  Google Scholar 

  • Woodruff, F., and S.M. Savin, 1985. δ13C values of Miocene Pacific benthic foramimfera: correlations with seal level and biological productivity, Geology, vol. 13, pp. 119–122.

    Article  Google Scholar 

  • Zahn, R., K. Winn, and M. Sarnthein, 1986. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi, Paleoceanography, vol. 1, 27–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McCorkle, D.C., Veeh, H.H., Heggie, D.T. (1994). Glacial-Holocene Paleoproductivity off Western Australia: A Comparison of Proxy Records. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78737-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78737-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78739-3

  • Online ISBN: 978-3-642-78737-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics