Skip to main content

Variations in Sedimentary Organic δ13C as a Proxy for Past Changes in Ocean and Atmospheric CO2 Concentrations

  • Conference paper

Part of the book series: NATO ASI Series ((ASII,volume 17))

Abstract

Theory, laboratory studies, and ocean observations indicate that the δ13C of marine plankton biomass and sedimentary remains thereof can be used as a proxy for ambient molecular CO2 concentration, [CO2(aq)] in ocean surface waters. A compilation of in situ ocean data suggests that about 89% of the global δ13Corg variation within bulk plankton or seston can be explained by a simple negative linear response to ambient [CO2(aq)] with the slope of the best-fit line = -0.6 ‰ µM-1. With this model the standard error of the estimate of surface ocean [CO2(aq)] is ±2.0 µM when δ13Corg is specified. This residual variability may be largely due to effects on plankton δ13Corg imparted by changes in phytoplankton CO2 demand that are independent of [CO2(aq)]. Within this variability and within the current range of ocean [CO2(aq)] there are slight differences between this model and various proposed nonlinear fits to observed global data. While an inverse relationship that can be influenced by both CO2 demand as well as concentration is theoretically expected, it does not provide an improved fit to observations over the negative linear model. When applied to the sedimentary δ13Corg record, the latter model predicts that the approximate 80 µatms increase in atmospheric pCO2 during the last glacial-interglacial transition (as documented by ice core analyses) should have resulted in a 1–2 ‰ decrease in plankton δ13C. Indeed, changes of this direction and magnitude are evident in most low-latitude Pleistocene/Holocene sediment core profiles of δ13Corg thus far reported. However, some geographic and temporal differences in past plankton isotopic response are present and expected due to i) regional non-equilibrium between ocean and atmospheric [CO2], and ii) changes in phytoplankton CO2 demand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Nat Acad Sci 47:623–632

    Article  Google Scholar 

  • Arthur MA, Dean WE, Claypool GE (1985) Anomalous 13C enrichment in modern marine organic carbon. Nature 315:216–218

    Article  Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich DYS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414

    Article  Google Scholar 

  • Berner RA (1990) Atmospheric CO2 over Phanerozoic time. Science 249:1382–1386

    Article  Google Scholar 

  • Broecker WS (1982) Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46:1689–1705

    Article  Google Scholar 

  • Broecker WS, Peng T- H (1982) Tracers in the Sea. Eldigio, Palisades

    Google Scholar 

  • Calder JA, Parker PL (1973) Geochemical implications of induced changes in 13C fractionation by blue-green algae. Geochim Cosmochim Acta 37:133–140

    Article  Google Scholar 

  • CLIMAP (1981) Seasonal reconstructions of the Earth’s surface at the last glacial maximum. Geol Soc Am Chart Ser MC36

    Google Scholar 

  • Crowley T (1991) Past CO2 changes and tropical sea surface temperatures. Paleoceanog 6:387–395

    Article  Google Scholar 

  • Curry WB, Crowley TJ (1987) The δ13C of equatorial Atlantic surface waters: Implications for ice age pCO2 levels. Paleoceanog 2:485–517

    Article  Google Scholar 

  • Curry WB, Duplessy JC, Labeyrie LD Shackleton NJ (1988) Changes in the distribution of δ13C of deep water TCO2 between the last glaciation and the Holocene. Paleoceanog 3:317–341

    Article  Google Scholar 

  • Dean WE, Arthur MA, Claypool GE (1986) Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal? Mar Geol 70:119–157

    Article  Google Scholar 

  • Degens ET (1969) Biogeochemistry of stable carbon isotopes. In: Eglinton G, Murphy MTJ (eds) Organic geochemistry. Springer, New York

    Google Scholar 

  • Degens ET, Guillard RRL, Sackett WM, Hellebust JA (1968) Metabolic fractionation of carbon isotopes in marine plankton — I: Temperature and respiration experiments Deep-Sea Res 15:1–9

    Google Scholar 

  • Descolas-Gros C, Fontugne MR (1985) Carbon fixation in marine phytoplankton: carboxylase activities and stable carbon isotope ratios; physiological and paleoclimatological aspects. Mar Biol 87:1–6

    Article  Google Scholar 

  • Descolas-Gros C, Fontugne MR (1990) Stable carbon isotope fractionation by marine phytoplankton during photosynthesis. Plant Cell Environ 13:207–218

    Article  Google Scholar 

  • Des Marais DJ, Strauss H, Summons RE, Hayes JM (1992) Carbon isotopic evidence for the stepwise oxidation of the Proterozoic environment. Nature 359: 605–609

    Article  Google Scholar 

  • Deuser WG (1970) Isotopic evidence for diminishing supply of available carbon during diatom bloom in the Black Sea. Nature 225:1069–1071

    Article  Google Scholar 

  • Deuser WG, Degens ET, Guillard RRL (1968) Carbon isotope relationships between plankton and sea water. Geochim Cosmochim Acta 32:657–660

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanog 3:343–360

    Article  Google Scholar 

  • Falkowski PG (1991) Species variability in the fractionation of 13C and 12C by marine phytoplankton. J Plank Res 13: 21–28

    Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  Google Scholar 

  • Fontugne MR, Calvert SE (1992) Late Pleistocene variability of the carbon isotopic composition of organic matter in the Eastern Mediterranean: Monitor of changes in the carbon sources and atmospheric CO2 concentrations. Paleoceanog 7:1–20

    Article  Google Scholar 

  • Fontugne MR, Duplessy J-C (1986) Variations of the monsoon regime during the upper Quaternary: Evidence from carbon isotopic record of organic matter in North Indian Ocean sediment cores. Palaeogeogr Palaeoclimatol Palaeoecol, 56:69–88

    Article  Google Scholar 

  • François R, Altabet MA, McCorkle D, Brunet C, Poisson A (1992) Changes in the δ13C of particulate organic matter suspended in the surface waters across the Subtropical Convergence (STC) in the S.W. Indian Ocean. EOS 73(43): 285

    Google Scholar 

  • Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob Biogeochem Cycles 6:185–198

    Article  Google Scholar 

  • Fry B, Wainwright SC (1991) Diatom sources of 13C-rich carbon in marine food webs. Mar Ecol — Prog Ser 76:149–157

    Article  Google Scholar 

  • Goericke R, Montoya JP, Fry B (in press) Physiology of isotope fractionation in algae and cyanobacteria. In: Lajtha K Michener B (eds), Stable isotopes in ecology. Blackwell, Oxford

    Google Scholar 

  • Hayes JM, Popp BN, Takigiku R, Johnson MW (1989) An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation. Geochim Cosmochim Acta 53:2961–2972

    Article  Google Scholar 

  • Hollander DJ, McKenzie JA (1991) CO2 control on carbon isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer. Geology 19:929–932

    Article  Google Scholar 

  • Jasper JP, Gagosian RB (1990) The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico. Geochim Cosmochim Acta 54:1117–1132

    Article  Google Scholar 

  • Jasper JP, Gagosian RB (1993) The relationship between sedimentary organic carbon isotopic composition and organic biomarker compound concentration. Geochim Cosmochim Acta 57:167–186

    Article  Google Scholar 

  • Jasper JP, Hayes JM (1990) A carbon isotope record of CO2 levels during the late Quaternary. Nature 347:462–464

    Article  Google Scholar 

  • Leuenberger M, Siegenthaler U, Langway CC (1992) Carbon isotopic composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357:488–490

    Article  Google Scholar 

  • Marino BD, McElroy MB, Salawitch RJ, Spaulding WG (1992) Glacial to interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357:461–466

    Article  Google Scholar 

  • McCabe B (1985) The dynamics of 13C in several New Zealand lakes. Ph.D. thesis, Univ. Waikato, Hamilton, New Zealand

    Google Scholar 

  • Mizutani H, Wada E (1982) Effect of high atmospheric CO2 concentration on δ13C of algae Orig Life 12:377–390

    Article  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  Google Scholar 

  • Müller PJ, Erlenkeuser H, von Grafenstein R (1983) Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores. In: Thiede J, Suess E (eds) Coastal up welling — its sediment record, Part B. Plenum, New York

    Google Scholar 

  • Owen T, Cess RD, Ramanathan V (1979) Early earth: An enhanced carbon dioxide greenhouse to compensate for reduced solar luminosity. Nature 277:640–642

    Article  Google Scholar 

  • Pardue JW, Scanian RS, van Baalen CB, Parker PL (1976) Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim Cosmochim Acta 40:309–312

    Article  Google Scholar 

  • Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21:10–126

    Article  Google Scholar 

  • Pedersen TF, Nielsen B, Pickering M (1991) Timing of late Quaternary productivity pulses in the Panama Basin and implications for atmospheric CO2. Paleoceanog 6:657–677

    Article  Google Scholar 

  • Petit JR, Mounier L, Jouzel J, Korotkevich YS, Kotlyakov VI, Lorius C (1990) Palaeoclimatological and chronological implications of the Vostok core dust record. Nature 343;56–58

    Article  Google Scholar 

  • Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW (1989) The post-Paleozoic chronology and mechanisms of 13C depletion in primary marine organic matter. Am J Sci, 289:436–454

    Article  Google Scholar 

  • Prahl FG, Muehlhausen LA, Lyle M (1989) An organic geochemical assessment of oceanographic conditions at MANOP Site C over the past 26,000 years. Paleoceanog 4:495–510

    Article  Google Scholar 

  • Rau, GH, Des Marais DJ (1992) A model relating plankton δ13C to CO2 supply and demand. Trans Am Geophys Union 72: 65

    Google Scholar 

  • Rau, GH, Froelich PN, Takahashi T, Des Marais DJ (1991a) Does sedimentary organic δ13C record variations in Quaternary ocean [CO2(aq)]? Paleoceanog 6:335–347

    Article  Google Scholar 

  • Rau, GH, Sullivan CW, Gordon LI (1991b) δ13C and δ15N variations in Weddell Sea particulate organic matter. Mar Chem 35:355–369

    Article  Google Scholar 

  • Rau, GH, Sweeney RE, Kaplan IR (1982) Plankton 13C/12C ratio changes with latitude: Differences between northern and southern oceans. Deep-Sea Res 29:1035–1039

    Article  Google Scholar 

  • Rau, GH, Takahashi T, Des Marais DJ (1989) Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341:516–518

    Article  Google Scholar 

  • Rau, GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419

    Article  Google Scholar 

  • Rau, GH, Takahashi T, Des Marais DJ, Sullivan CW (1991c) Particulate organic matter δ13C variations across the Drake Passage. J Geophys Res 96C:15131–15135

    Article  Google Scholar 

  • Rau GH, Teyssie J-L, Rassoulzadegan R, Fowler SW (1990) 13C/12C and 15N/14N variations among size-fractionated marine particles: Implications for their origin and trophic relationships. Mar Ecol — Prog Ser 59:33–38

    Article  Google Scholar 

  • Roeske CA O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochem 23:6275–6285

    Article  Google Scholar 

  • Seckbach J, Kaplan IR (1973) Growth pattern and 13C/12C isotope fractionation of Cyanidium caldarium and hot spring algal mats. Chem Geol 12:161–169

    Article  Google Scholar 

  • Shackleton NJ, Pisias NG (1973) Atmospheric carbon dioxide, orbital forcing, and climate. In: Sundquist ET, Broecker WS (eds) Tlie carbon cycle and atmospheric CO2: Natural variations Archean to present. Geophys Monogr Ser, vol. 32, AGU, Washington, D.C.

    Google Scholar 

  • Shemesh A, Charles CD, Fairbanks RG (1992) Oxygen isotopes in biogenic silica: Global changes in ocean temperature and isotopic composition. Science 256:1434–1436

    Article  Google Scholar 

  • Sikes EL, Farrington JW, Keigwin LD (1991) Use of the alkenone unsaturation ratio Uk 37 to determine past sea surface temperatures: Core top SST calibrations and methodology considerations. Earth Planet Sci Lett 104:36–47

    Article  Google Scholar 

  • Skirrow G (1975) The dissolved gases — carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic, London

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric carbon dioxide budget. Science 247:1431–1438

    Article  Google Scholar 

  • Thunell RC, Qingmin M, Calvert SE, Pedersen TF (1991) Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2. Paleoceanog 7:143–162

    Article  Google Scholar 

  • Westerhausen L, Poynter J, Eglinton G, Erlenkeuser H, Sarnthein M (1993) Marine and terrigenous origin of organic matter in modern sediments of the equatorial east Atlantic: the δ13C and molecular record. Deep-Sea Res (in press)

    Google Scholar 

  • Wong WW, Sackett WM (1978) Fractionation of stable carbon isotopes by marine phytoplankton. Geochim Cosmochim Acta 42:1809–1815

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rau, G.H. (1994). Variations in Sedimentary Organic δ13C as a Proxy for Past Changes in Ocean and Atmospheric CO2 Concentrations. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78737-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78737-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78739-3

  • Online ISBN: 978-3-642-78737-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics