Data Processing in Chronobiological Studies

  • J. De Prins
  • B. Hecquet


Observations of plants and animals show that their activities are time dependent. Measurements of physiological quantities as a function of time often display the presence of more or less repetitive patterns in living organisms, including man. Such observations raise many questions. Is a pattern, i. e. a rhythm, present or do we only observe random fluctuations? How are we able to characterize what we see? Precise answers to these questions require the choice of procedures, giving us pertinent parameters, to qualify and quantify our observations.


Linear Filter Chaotic Sequence Sinusoidal Function Autocovariance Function Maximum Entropy Spectral Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hecquet B, De Prins J (1992) Statistical procedures in chro-nobiology. Scope and application. A critical survey. Chrono-biol Int (in press)Google Scholar
  2. 2.
    De Prins J, Cornélissen G, Malbecq W (1986) Statistical procedures in chronobiology and chronopharmacology. Annu Rev Chronopharmacol 2: 27–141Google Scholar
  3. 3.
    Papoulis A (1977) Signal analysis. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    De Prins J, Lechien JP (1976) Remarques sur la pratique de Pechantillonnage et de l’analyse spectrale. Bull CI Sci Acad Belg 62: 620–645Google Scholar
  5. 5.
    Cleveland J, McGill ME, McGill R (1988) The shape parameter of a two-variable graph. JASA 83: 289–300Google Scholar
  6. 6.
    Cleveland J, McGill R (1985) Graphical perception and graphical methods for analysing scientific data. Science 229: 828–833PubMedCrossRefGoogle Scholar
  7. 7.
    Kronsjo LI (1979) Algorithms: their complexity and efficiency. Wiley, New YorkGoogle Scholar
  8. 8.
    Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. 9.
    Aris R (1978) Mathematical modelling techniques. Pitman, LondonGoogle Scholar
  10. 10.
    Bloomfield (1976) Fourier analysis of time series: an introduction. Wiley, New YorkGoogle Scholar
  11. 11.
    Schwartz M, Shaw L (1975) Signal processing: discrete spectral analysis, detection and estimation. McGraw-Hill, New YorkGoogle Scholar
  12. 12.
    Croquette V (1982) Déterminisme et chaos. Pour la Science 62: 62–77Google Scholar
  13. 13.
    Glass L, Mackey MC (1988) From clocks to chaos. The rhythms of life. Princeton University Press, PrincetonGoogle Scholar
  14. 14.
    Chatfield C (1975) The analysis of time series. Theory and practice. Chapman and Hall, LondonGoogle Scholar
  15. 15.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WV (1986) Numerical recipes. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Sokal RR, Rohlf RG (1981) Biometry, 2nd ed. Freeman, San FranciscoGoogle Scholar
  17. 17.
    Rey W (1978) Robust statistical methods. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    Diaconis P, Efron B (1983) Méthodes de calculs statistiques intensifs sur ordinateurs. Pour la Science 69: 46–58. English version in Scientific American. 96–108. May 1983Google Scholar
  19. 19.
    Efron B (1982) The jackknife, the bootstrap and other resampling plans. CBM-SNSF Regional Conference series in applied mathematics SIAM, PhiladelphiaCrossRefGoogle Scholar
  20. 20.
    Malbecq W, De Prins J (1981) Applications of maximum entropy methods to cosinor analysis. J Interdiscip Cycle Res 12: 97–107CrossRefGoogle Scholar
  21. 21.
    Blackman RB, Tukey JW (1958) The measurement of power spectra. Dover, New YorkGoogle Scholar
  22. 22.
    Burgess JC (1975) On digital spectrum analysis of periodic signals. Acoust Soc Am 58: 556–567CrossRefGoogle Scholar
  23. 23.
    Granger CWJ (1964) Spectral analysis of economic time series. Princeton University Press, PrincetonGoogle Scholar
  24. 24.
    Bogner RE, Constantinides AG (eds) (1975) Introduction to digital filtering. Wiley, LondonGoogle Scholar
  25. 25.
    Lee YH, Kassam SA (1985) Generalized median filtering and related nonlinear filtering techniques. IEEE Trans Acoustics Speech Signal Processing 33: 672–683CrossRefGoogle Scholar
  26. 26.
    Bozic SM (1979) Digital and Kalman filtering. Arnold, LondonGoogle Scholar
  27. 27.
    Sorenson HW (1970) Least-squares estimation from Gauss to Kalman. IEEE Spectrum 7: 63–68CrossRefGoogle Scholar
  28. 28.
    De Prins J, Malbecq W (1984) Signal averaging for the analysis of irregularly spaced data. J Interdiscip Cycle Res 15: 179–188CrossRefGoogle Scholar
  29. 29.
    De Prins J, Cornélissen G (1979) Complex demodulation and double demodulation. Bull CI Acad Belg 65: 445–55Google Scholar
  30. 30.
    Bingham C, Arbogast B, Cornélissen G, Lee JK, Halberg F (1982) Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9: 397–439PubMedGoogle Scholar
  31. 31.
    Childer DG (ed) (1978) Modern spectrum analysis. IEEE, New YorkGoogle Scholar
  32. 32.
    Ulrych TJ, Bishop TN (1975) Maximum entropy spectral analysis and autoregressive decomposition. Rev Geophys Space Phys 13:183–200CrossRefGoogle Scholar
  33. 33.
    Gutowski PR, Robinson EA, Treitel S (1978) Spectral analysis estimation: fact or fiction. IEEE G.E. 16: 80–84CrossRefGoogle Scholar
  34. 34.
    Losee J (1980) A historical introduction to the philosophy of science. Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Bstinning E (1973) The physiological clock. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. De Prins
  • B. Hecquet

There are no affiliations available

Personalised recommendations