Skip to main content

Chronochemotherapy of Malignant Tumors: Temporal Aspects of Antineoplastic Drug Toxicity

  • Chapter
Biologic Rhythms in Clinical and Laboratory Medicine

Abstract

Chronobiology defines and quantifies the temporal organization of life on every level of structural and functional complexity with a focus on exogenous and endogenous periodic biophysical phenomena called biological rhythms. The effect of time can be considered as a systematic and, to a certain degree, predictive factor rather than a chaotic error term in the quantitative assessment of biological data [1–3]. Thus, chronobiologists are utilizing the understanding of such phenomena in the temporal design of laboratory experiments and clinical observations to improve on the precision of the answers of scientific experiments and epidemiological and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halberg F, Nelson W, Cornelissen G, Haus E, Scheving LE, Good RA (1979) On methods for testing and achieving cancer chronotherapy. Cancer Treat Rep 63:1428–1430

    PubMed  CAS  Google Scholar 

  2. Burns ER (1981) A critique of the practice of comparing control data obtained at a single time point to experimental data obtained at multiple time points. Cell Tissue Kinet 14: 219–224

    PubMed  CAS  Google Scholar 

  3. Burns ER (1982) A critique of the practice of plotting data obtained in two in vivo on an ’hours after treatment’ format. Oncology 39:250–254

    Article  PubMed  CAS  Google Scholar 

  4. Scheving LE (1981) 11th International Congress of Anatomy: biological rhythms in structure and function. Liss, New York, pp 39–79

    Google Scholar 

  5. Thorud E, Clausen OPF, Bjerknes R, Aarnaes E (1980) The stathmokinetic method in vivo time-response with special reference to circadian variationsin epidermal cell proliferation in the hairless mouse. Cell Tissue Kinet 13: 625–634

    PubMed  CAS  Google Scholar 

  6. Rubin NH (1982) Influence of the circadian rhythm in cell division on radiation-induced mitotic delay in vivo. Radio Res 89: 65–76

    Article  CAS  Google Scholar 

  7. Mamontov SG (1968) Diurnal rhythm of mitoses in the epithelium of the mouse tongue. Bull Exp Biol Med 66: 1277–1278

    Article  Google Scholar 

  8. Izquierdo JN, Gibbs SJ (1974) Turnover of cell-renewing populations undergoing circadian rhythms in cell proliferation. Cell Tissue Kinet 7: 99–111

    PubMed  CAS  Google Scholar 

  9. Smaaland R, Sletvold O, Bjerknes R, Lote K, Laerum OD (1987) Circadian variations of cell cycle distribution in human bone marrow. Chronobiologia 14:239

    Google Scholar 

  10. Laerum OD, Aardal NP (1981) Chronobiological aspects of bone marrow and blood cells. In: Acosta EV, Mayers-bach H, Scheving LE et al. (eds) Eleventh International Congress of Anatomy: Biological Rhythms in Structure and Function. Liss, New York, pp 87–97

    Google Scholar 

  11. Durie BGM, Salmon SE, Russell DH (1977) Polyamines as markers of response and disease activity in cancer chemotherapy. Cancer Res 36: 214–221

    Google Scholar 

  12. Janne J, Poso H, Raina A (1978) Polyamines in rapid growth and cancer. Biochem Biophys Acta 473: 241–243

    PubMed  CAS  Google Scholar 

  13. Hrushesky W, Merdink J, Abdel-Monem M (1983) Circadian rhythmicity characterizes monacetyl polyamine urinary excretion. Cancer Res 43: 3944–3947

    PubMed  CAS  Google Scholar 

  14. Burns, ER, Scheving LE, Tsai TH (1979) Circadian rhythms in DNA synthesis and mitosis in normal mice and in mice bearing the Lewis lung carcinoma. Eur J Cancer 15: 233–242

    Article  PubMed  CAS  Google Scholar 

  15. Nash RE, Echave Llanos JM (1971) Circadian variations in DNA synthesis of a fast-growing and a slow-growing hepatoma: DNA synthesis rhythm in hepatoma. J Natl Cancer Inst 47:1007–1012

    PubMed  CAS  Google Scholar 

  16. Brown HE, Dougherty TF (1956) The diurnal variations of blood leucocytes in normal and adrenalectomized mice. Endocrinology 58: 365–375

    Article  PubMed  CAS  Google Scholar 

  17. Kanabrocki EL, Scheving LE, Halberg F et al. (1975) Circadian variation in presumably healthy young soldiers. Department of the Army, Document PF 228437, National Technical Information Service, US Department of Commerce, PO Box 1553, Springfield, Virginia

    Google Scholar 

  18. Abo T, Kumagai K (1978) Studies of surface immunoglobulins on human b lymphocytes. Ill: Physiologic variations of sig + cells in peripheral blood. Clin Exp Immunol 33: 441–452

    PubMed  CAS  Google Scholar 

  19. Cove-Smith JR, Pownall R, Kabler TA et al. (1979) Chronopharmacology. In: Reinberg A, Halbert G (eds) International Congress of Pharmacology. Pergamon, Oxford, pp 369–373

    Google Scholar 

  20. Tavadia H, Fleming K, Hume P, Simpson HW (1975) Circadian rhythmicity of human plasma Cortisol and PHA-in-duced lymphocyte transformation. Clin Exp Immunol 22: 190–193

    PubMed  CAS  Google Scholar 

  21. Fernandes G, Halberg F, Yunis E, Good RA (1976) Circadian rhythmic plaque-forming cell response of spleens from mice immunized with SRBC. J Immunol 117:962–966

    PubMed  CAS  Google Scholar 

  22. Fernandes G, Carandente F, Halberg E, Halberg F, Good RA (1979) Circadian rhythm in activity of lymphocytic natural killer cells from spleens of Fischer rats. J Immunol 123: 622–625

    PubMed  CAS  Google Scholar 

  23. Kohler WC, Karacan I, Rennert OM (1972) Circadian variation of RNA in human leucocytes. Nature 238: 94–96

    Article  PubMed  CAS  Google Scholar 

  24. Hrushesky WJM, Gruber SA, Sothern RB, Hoffman RA, Lakatua D, Carlson A, Cessa F, Simmons RL (1988) Natural killer cell activity is age, estrous and circadian-stage dependent and correlates inversely with metastatic potential. J Natl Cancer Inst 80:1232–1237

    Article  PubMed  CAS  Google Scholar 

  25. Pollock RE, Babcock GF, Romsdahl M, Nishioka K (1984) Surgical stress-mediated suppression of murine natural killer cell cytotoxicity. Cancer Res 44: 3888–3891

    PubMed  CAS  Google Scholar 

  26. Ratajczak HV, Sothern RB, Hrushesky WJM (1988) Estrous influence on surgical cure of a mouse breast cancer. J Exp Med 168: 88–96

    Article  Google Scholar 

  27. Gruber SA, Nichol KL, Sothern RB, Malone ME, Potter JD, Lakatua D, Hrushesky WS (1989) Menstrual history and breast cancer. Breast Cancer Res Treat 13: 278

    Article  PubMed  CAS  Google Scholar 

  28. Cohen P, Wax Y, Modan B (1983) Seasonality in the occurrence of breast cancer. Cancer Res 43: 892–896

    PubMed  CAS  Google Scholar 

  29. Jacobson H, Janerich DT; Nasca P, Langevin T, Steiner B, Hrushesky WSM (1983) Circannual rhythmicity in the incidence of endocrine malignancy: evidence for neurohumoral control of cancer (ca) development and growth, abstracted. Chronobiol. 10:135

    Google Scholar 

  30. Hrushesky W, Teslow T, Halberg F et al. (1979) Temporal components of predictable variability along the 1-year scale in estrogen receptor concentration of primary human breast cancer, abstracted. Proc Am Soc Clin Oncol 20: 331

    Google Scholar 

  31. Hughes A, Jacobson HI, Wagner RK et al. (1976) Ovarian independent fluctuations of estradiol receptor levels in mammalian tissues. Mol Cell Endocrinol 5: 379–388

    Article  PubMed  CAS  Google Scholar 

  32. Langlands AO, Simpson H, Sothern R et al. (1977) Different timing of circannual rhythms in mortality of women with breast cancer diagnosed before and after menopause. In: Proceedings of the 8th International Scientific Meeting of the International Epidemiological Association, San Juan, Puerto Rico, 17–23 Sept 1977

    Google Scholar 

  33. Haus E, Halberg F, Scheving LE, Cordoso S, Kiihl A, Sothern R, Shiotsuka R, Hwang DS, Pauly JE (1972) Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 77:80–82

    Article  Google Scholar 

  34. Scheving LE, Haus E, Kuhl JFW, Pauly JE, Halberg F, Cardoso S (1976) Close reproduction by different laboratories of characteristics of circadian rhythm in l-β-D-arabinofu-ranosylcystosine tolerance by mice. Cancer Res 36: 1133–1137

    PubMed  CAS  Google Scholar 

  35. Hrushesky WJM, Dell I, Eaton J, Halberg F (1982) Circa-dian-stage-dependent effect of doxorubicin upon reduced glutathione in the murine heart. Proc Am Assoc Cancer Res 23:12

    Google Scholar 

  36. Hrushesky WJM (1983) The clinical application of chronobiology to oncology. Am J Anat 168: 519–542

    Article  PubMed  CAS  Google Scholar 

  37. Wesson LG (1964) Electrolyte excretion in relation to diurnal cycles of renal function. Medicine (Baltimore) 43: 547–592

    Google Scholar 

  38. Scheving LE (1981) Circadian rhythms in cell proliferation: their importance when investigating the basic mechanism of normal versus abnormal growth. In: Acosta EV, Mayersbach H, Scheving LE et al. (eds) 11th International Congress of Anatomy, Biological Rhythms in Structure and Function. Liss, New York, pp 39–79

    Google Scholar 

  39. Burns RE (1981) Circadian rhythmicity in DNA synthesis in untreated mice as a basis for improved chemotherapy. Cancer Res 41: 2795–2802

    PubMed  CAS  Google Scholar 

  40. LaBrecque DR, Feigenbaum A, Bachur NR (1978) Diurnal rhythm: effects on hepatic regeneration and hepatic regenerative stimulator substance. Science 199:1082–1084

    Article  PubMed  CAS  Google Scholar 

  41. Scheving LE (1984) Chronobiology of cell proliferation in mammals: implications for basic research and cancer chemotherapy. In: Edmunds LN (ed) Cell cycle clocks. Dek-ker, New York, pp 455–499

    Google Scholar 

  42. Mayersbach HV (1978) Die Zeitstruktur des Organismus. Auswirkungen auf zellulaere Leistungsfahigkeit und Medikamentenempfindlichkeit. Arzneimittelforsch/Drug Res 28:1824–1836

    Google Scholar 

  43. Kinlaw WB, Fish LH, Schwartz HL, Oppenheimer JH (1987) Diurnal variation in hepatic expression of the rat S14 gene is synchronized by the photoperiod. Endocrinology 120:1563–1567

    Article  PubMed  CAS  Google Scholar 

  44. Petit E, Milano G, Levi F, Thyss A, Bailleul F, Schneider M (1987) Circadian rhythm in 5-FU pharmacokinetics during 5-day continuous infusion. Satellite Symposia on the Proceedings of the European Conference on Clinical Oncology, vol 4, p 293

    Google Scholar 

  45. Levi F, Hrushesky WJM, Borch RF, Pleasants ME, Kennedy BJ, Halberg F (1982) Cisplatin urinary pharmacokinetics and nephrotoxicity: a common circadian mechanism. Cancer Treat Rep 66:1933–1938

    PubMed  CAS  Google Scholar 

  46. Hrushesky WJM, Borsch R, Levi F (1982) Circadian time dependence of cisplatin urinary kinetics. Clin Pharmacol Ther 32: 330–339

    Article  PubMed  CAS  Google Scholar 

  47. Boughattas AN, Levi F, Roulon A, Mechkouri M, Ler-naigre G, Cal JC, Camber J, Reinberg A, Mathe G (1987) Similar circadian rhythm in murine host tolerance for two platinum analogs: carboplatin (CBDCA) and oxaliplatin (I-OHP). Proc Am Assoc Cancer Res 28:1788

    Google Scholar 

  48. Aherne GW, English J, Burton N, Arendt J, Marks V (1987) Chronopharmacokinetics and their relationship to toxicity and effect with reference to methotrexate, 6-mer-captopurine and morphine. Satellite Symposia on the Proceedings of the European Conference on Clinical Oncology, vol 4, p 40

    Google Scholar 

  49. Halberg F, Haus E, Cardoso SS, Scheving LE, Kuhl JFW, Shiotsuka R, Rosene G, Pauly JE, Runge W, Spalding JF, Lee JK, Good RA (1972) Toward a chronotherapy of neoplasia: tolerance of treatment depends upon host rhythms. Experientia 29: 909–934

    Article  Google Scholar 

  50. Scheving LA, Yeh YC, Tsai T, Scheving LE (1980) Circadian phase-dependent stimulatory effects of epidermal growth factor on deoxyribonucleic acid synthesis in the duodenum, jejunum, ileun, caecum, colon, and rectum of the adult male mouse. Endocrinology 106:1498–1503

    Article  PubMed  CAS  Google Scholar 

  51. Scheving LA, Yeh YC, Tsai TH, Scheving LE (1979) Circadian phase-dependent stimulatory effects of epidermal growth factor on deoxyribonucleic acid synthesis in the tongue, esophagus, and stomach of the adult male mouse. Endocrinology 105:1475–1480

    Article  PubMed  CAS  Google Scholar 

  52. Halberg F, Haus E, Scheving LE (1978) Sampling of biologic rhythms, chronocytokinetics and experimental oncology. In: Valleron AJ, Macdonald PDM (eds) Biomathe-matics and cell kinetics. Elsevier North-Holland, New York, pp 175–190

    Google Scholar 

  53. Clausen OPF, Thorud E, Bjerknes R, Elojor K (1979) Circadian rhythms in mouse epidermal basal cell proliferation. Variations in compartment size, flux, and phase duration. Cell Tissue Kinet 12: 319–337

    PubMed  CAS  Google Scholar 

  54. Haus E, Lakatua DJ, Swoyer J, Sackett-Lundeen L (1983) Chronobiology in hematology and immunology. Am J Anat 168: 467

    Article  PubMed  CAS  Google Scholar 

  55. Swoyer J, Haus E, Lakatua D, Sackett-Lundeen L, Thompson M (1984) Chronobiology in the clinical laboratory. In: Haus E, Kabat HF (eds) Chronobiology 1982–1983. Karger, New York, pp 533–543

    Google Scholar 

  56. Levi FA, Canon C, Blum JP, Mechkouri M, Reinberg A, Mathe G (1985) Circadian and/or circahemidian rhythms in nine lymphocyte-related variables from peripheral blood of health subjects. J Immunol 134: 217–220

    PubMed  CAS  Google Scholar 

  57. Gatti G, Cavallo R, Del Ponte D, Sartori M, Masera R, Carignola R, Carandente F, Angeli A (1986) Circadian changes of human natural killer (NK) cells and their in vitro susceptibility to Cortisol inhibition. Annu Rev Chro-nopharmacol 3: 75–78

    CAS  Google Scholar 

  58. Levi, F, Canon C, Blum JP, Reinberg A, Mathes G (1983) Large-amplitude circadian rhythm in help: suppressor ratio of peripheral blood lymphocytes. Lancet ii: 462–463

    Article  Google Scholar 

  59. Ross DD, Pollak A, Akman SA, Bachur NR (1980) Diurnal variation of circulating human myeloid progenitor cells. Exp Hematol 8: 954–960

    PubMed  CAS  Google Scholar 

  60. Verma DS, Fisher R, Spitzer G, Zander AR, McCredie KB, Dicke KA (1980) Diurnal changes in circulating myeloid progenitor cells in man. Am J Hematol 9: 185–192

    Article  PubMed  CAS  Google Scholar 

  61. Killmann SA, Cronkite EP, Fliedner TM, Bond VP (1962) Mitotic indices of human bone marrow cells. I. Number and cytologic distribution of mitoses. Blood 19: 743–750

    PubMed  CAS  Google Scholar 

  62. Mauer AM (1965) Diurnal variation of proliferative activity in the human bone marrow. Blood 26:1–7

    PubMed  CAS  Google Scholar 

  63. Bellamy WT, Alberts DS, Dorr RT (1988) Circadian variation in non-protein sulfhydryl levels of human bone marrow. Cancer Res Eur J Cancer Clin Oncol 24:1759–1762

    Article  CAS  Google Scholar 

  64. Buchi KN, Moore JG, Rubin NH (1987) Circadian cellular proliferation measurements in human rectal mucosa. Chronobiologia 14:155–156

    Google Scholar 

  65. Buchi KN, Rubin N, Moore JG (1988) Circadian rhythm of cellular proliferation in the human rectal mucosa. Annu Rev Chronopharmacol 5: 355

    Google Scholar 

  66. Markiewicz A, Lelek A, Panz B, Wagiel J, Boldys H, Hart-leb M, Kaminski M (1987) Chronomorphology of jejunum in man. Chronobiologia 14: 202

    Google Scholar 

  67. Levi F (1991) Chronopharmacology of anticancer agents and cancer chronotherapy. In: Kummerle H (ed) International handbook of clinical pharmacology. Ecomed, Lands-berg (in press)

    Google Scholar 

  68. Klevecz RR, Shymko RM, Blumenfeld D, Braly PS (1987) Circadian gating of S phase in human ovarian cancer. Cancer Res 47: 6267–6271

    PubMed  CAS  Google Scholar 

  69. Garcia Sainz M, Halberg F (1966) Mitotic rhythm in human cancer, reevaluated by electronic computer programs- evidence for chronopathology. J Natl Cancer Inst 37:279–292

    PubMed  CAS  Google Scholar 

  70. Hrushesky WJM, Haus E, Lakatua DJ, Halberg F, Langevin T, Kennedy BJ (1985) Marker rhythms for cancer chrono-chemotherapy. In: Haus E, Kabat HF (eds) Chronobiology 1981–1983. Karger, New York, pp 493–499

    Google Scholar 

  71. Halberg F (1974) From aniatoxicosis and aniatrosepses toward chronotherapy. Introductory remarks to the 1974 Capri Symposium on timing and toxicity: the necessity for relating treatment to bodily rhythms. Tempus non solum dosis venenum facit. In: Aschoff J, Ceresa F, Halberg F (eds) Chronobiological Aspects if Endocrinology. Stuttgart, F. K. Schattauer Verlag, pp 1–34

    Google Scholar 

  72. Derer I (1960) Rhythm and proliferation with special reference to the six day rhythm of blood leukocyte count. Neo-plasma 7:117–134

    CAS  Google Scholar 

  73. Ashkenazi IE, Hartman H, Strulovitz B et al. (1975) Activity rhythms of enzymes in human red blood cell suspensions. J Interdiscip Cycle Res 6: 291–301

    Article  CAS  Google Scholar 

  74. Haus E, Halberg F, Loken MD, Kim YS (1973) Circadian rhythmometry of mammalian radiosensitivity. In: Tobias A, Todd P (eds) Space radiation biology and related topics. Academic, London, pp 435–474

    Google Scholar 

  75. Hrushesky WJM (1985) Circadian timing of cancer chemotherapy. Science 228: 73–75

    Article  PubMed  CAS  Google Scholar 

  76. Roemeling R, Mormont M-C, Walker K, Olshefski R, Langevin T, Rabatin J, Wick M, Hrushesky W (1987) Cancer control depends upon the circadian shape of continuous FUDR infusion. Proc Am Assoc Cancer Res 28: 1293

    Google Scholar 

  77. Peters GJ, Van Dijk J, Nadal JC, Van Groeningen CJ, Lan-kelma J, Pinedo HM (1987) Diurnal variation in the therapeutic efficacy of 5-fluorouracil against murine colon cancer. In Vivo 1:113–118

    PubMed  CAS  Google Scholar 

  78. Rivard G, Infante-Rivard C, Hoyeux C, Champagne J (1985) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: better in the evening. Lancet ii: 1264–1266

    Article  Google Scholar 

  79. Focan C (1979) Sequential chemotherapy and circadian rhythm in human solid tumors. Cancer Chemother Pharmacol 3:197–202

    Article  PubMed  CAS  Google Scholar 

  80. Halberg F (1964) Medical aspects of stress in the miliary climate. In: Walter Reed Army Institute of Research Symposium. US Government Printing Office, Washington DC, pp 1–36

    Google Scholar 

  81. Halberg F, Haus E, Cardoso SS, Scheving LE, Kiihl JF, Shiotsuka R, Rosene G, Pauly JE, Runge W, Spelding JF, Lee JK, Good RA (1973) Toward a chronotherapy of neoplasia: tolerance of treatment depends upon host rhythms. Experientia 29: 909–1044

    Article  PubMed  CAS  Google Scholar 

  82. Scheving LE, Burns ER, Pauly JE, Halberg F, Haus E (1977) Survival and care of leukemic mice after circadian optimization of treatment with cyclophosphamide and 1-β-D-arabinofuranosylcytosine. Cancer Res 37: 3648–3655

    PubMed  CAS  Google Scholar 

  83. Rugh R, Castro V, Baiter S et al. (1963) X-rays: are there cyclic variations in radiosensitivity? Science 142: 53–56

    Article  PubMed  CAS  Google Scholar 

  84. Sothern RB, Halberg F, Halberg E, Zinneman HH, Kennedy BJ (1981) Circadian and methodologic aspects of toxicity from cis-diamminedichloroplatinum, adriamycin and methylprednisolone interaction in rats with immunocy-toma. In: Walker CA, Winget CM, Soliman KFA (eds) Chronopharmacology and Chronotherapeutics, Florida State University Institute, Tallahassee, pp 247–256

    Google Scholar 

  85. Roemeling R von, Hrushesky WJM (1986) Advanced transitional cell bladder cancer: a treatable disease. Semin Surg Oncol 2:76–89

    Article  PubMed  CAS  Google Scholar 

  86. Hryniuk WM, Levine MN, Levin L (1986) Analysis of dose intensity for chemotherapy in early (stage II) and advanced breast cancer. NCI Monogr 1: 87–94

    PubMed  Google Scholar 

  87. Levin L, Hryniuk W (1987) The use of dose intensity (DI) to solve problems in gynecologic oncology. Proc Am Soc Clin Oncol 6:119

    Google Scholar 

  88. Hrushesky WJM, Levi F, Halberg F, Kennedy BJ (1982) Circadian stage dependence of cisdiamminedichloroplati-num lethal toxicity in rats. Cancer Res 42: 945–949

    PubMed  CAS  Google Scholar 

  89. Hecquet B, Meynadier J, Bonneterre J, Adenis L, De-maille A (1985) Time dependency in plasmatic protein binding of cisplatin. Cancer Treat Rep 69:79–82

    PubMed  CAS  Google Scholar 

  90. Levi FA, Hrushesky WJM, Halberg F, Langevin TR, Haus E, Kennedy BJ (1982) Lethal nephrotoxicity and hematologic toxicity of cisdiamminedichloroplatinum ameliorated by optimal circadian timing and hydration. Eur J Cancer Clin Oncol 18: 471–477

    Article  PubMed  CAS  Google Scholar 

  91. Good RA, Sothern RB, Stoney PJ, Simpson HW, Halberg E, Halberg F (1977) Circadian state dependence of adria-mycin-induced tumor regression and recurrence rates in immunocytomabearing LOU rats. Chronobiologia 4:174

    Google Scholar 

  92. Halberg F, Gupta BD, Haus E, Halberg E, Deka AC, Nelson W, Sothern RB, Cornelissen G, Lee JK, Lakatua DJ, Scheving LE, Burns ER (1977) Steps toward a cancer chro-nopolytherapy. In: Proceedings of the XlVth International Congress of Therapeutics, Montpellier. L’Expansion Scientifique Franchise, Paris, pp 151–196

    Google Scholar 

  93. Sothern RB, Nelson WL, Halberg F (1977) A circadian rhythm in susceptibility of mice to the anticancer drug, adriamycin. In: Proceedings of the XII International Conference of the International Society for Chronobiology, Washington DC II Ponte, Milano, pp 433–438

    Google Scholar 

  94. Sothern RB, Halberg F, Good RA, Simpson HW, Grage TB (1981) Difference in timing of circadian susceptibility rhythm in murine tolerance of chemically-related antima-lignant antibiotics: adriamycin and daumomycin. In: Walker CA, Winget CM, Soliman KFA (eds) Chronopharmacology and Chronotherapeutics. Florida A&M University Foundation Tallahassee, pp 257–268

    Google Scholar 

  95. Mormont MC, Roemeling R von, Sothern RB, Berestka JS, Langevin TR, Olshefski R, Wick M, Hrushesky WJM (1988) Circadian rhythm and seasonal dependence in tolerance of mice to 4’-epidoxorubicin. Invest New Drugs 6: 273–283

    Article  PubMed  CAS  Google Scholar 

  96. Roemeling R von, Christiansen NP, Hrushesky WJM (1985) Lack of antiemetic effect of high dose metoclopra-mide. J Clin Oncol 3:1273–1276

    Google Scholar 

  97. Roemeling R von, Hrushesky WJM, Fraley E (1987) Long-term control of locally advanced transitional cell bladder cancer (TCCB) by high-dose intensity, circadian-based adjuvant chemotherapy. In: Salmon SE (ed) Adjuvant treatment of cancer, vol 5. Grune and Stratton Orlando, pp 571–580

    Google Scholar 

  98. Pinedo HM, Peters GJ (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6:1653–1664

    PubMed  CAS  Google Scholar 

  99. Hryniuk WM, Figueredo A, Goodyear M (1987) Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer. Semin Oncol 14 [Suppl 4]: 3–11

    PubMed  CAS  Google Scholar 

  100. Burns ER, Beland SS (1984) Effect of biological time on the determination of the LD 50 of 5-fluorouracil in mice. Pharmacology 28: 296–300

    Article  PubMed  CAS  Google Scholar 

  101. Popovic P, Popovic V, Baughman J (1982) Circadian rhythm and 5-fluorouracil toxicity in C3H mice. Biomed Therm 25:185–187

    Google Scholar 

  102. Gonzales JL, Sothern RB, Thatcher G, Nguyen N, Hrushesky WJM (1989) Substantial difference in timing of murine circadian susceptibility to 5-fluorouracil and FUDR. Proc Am Assoc Cancer Res 30: 616

    Google Scholar 

  103. Peters GJ, Van Dijk J, Nadal JC, Van Groeningen CJ, Lan-kelma J, Pinedo HM (1987) Diurnal variation in the therapeutic efficacy of 5-fluorouracil against murine colon cancer. In Vivo 1:113–118

    Google Scholar 

  104. Gardner MLG, Plumb JA (1981) Diurnal variation in the intestinal toxicity of 5-fluorouracil in the rat. Clin Sci 61: 717–722

    PubMed  CAS  Google Scholar 

  105. Roemeling R von, Hrushesky WJM (1990) Circadian FUDR infusion pattern determines its therapeutic index. J Natl Cancer Inst 82: 386–393

    Article  Google Scholar 

  106. Levi F, Soussan A, Adam R, Caussanel JP, Metzger G, Misset JL, Descorps-Decleres, Kustlinger F, Lorphelin D, Jasmin C, Bismuth H, Reinberg A, Mathe G (1989) Programmable-in-time pumps for chronotherapy of patients (pts) with colorectal cancer with 5-day circadian modulated venous infusion of 5-fluorouracil (CVT-5FUra). Proc Am Soc Clin Oncol 8: 111 1989 (abstr)

    Google Scholar 

  107. Roemeling R von, Hrushesky WJM (1989) Circadian patterning of continuous FUDR infusion reduces toxicity and allows higher dose intensity. J Clin Oncol 7:1710–1719

    Google Scholar 

  108. Vugrin D (1988) Systemic therapy of metastatic renal cell carcinoma. Semin Nephrol 7:155–162.

    Google Scholar 

  109. Levi F (1989) Ambulatory chronotherapy of colorectal cancer with 5-fluorouracil, folinic acid and oxaliplatinum via a multichannel programmable pump. Results of a phase II trial. Proceedings of the 5th European Conference on Clinical Oncology (ECCO), London, 9 March 1989. (abst)

    Google Scholar 

  110. Wesen C, Roemeling R von, Lanning R, Grage T, Olson G, Hrushesky WJM (1992) The effect of circadian modification of intra-arterial FUDR infusion rate upon hepatic toxicity. J Clin Oncol (in press)

    Google Scholar 

  111. Chabner BA (1982) Pyrimidine antagonists. In: Chabner BA (ed) Pharmacologic principles of cancer treatment. Saunders, Philadelphia, pp 183–212

    Google Scholar 

  112. Reichard P, Skold O, Klein G (1959) Possible enzymatic mechanisms for development of resistance against fluorouracil in ascites tumors. Nature 183: 939–941

    Article  PubMed  CAS  Google Scholar 

  113. Klubes P, Connelly K, Cerna I (1978) Effects of 5-fluorouracil on 5-fluorodeoxyuridine 5’-monophosphate and 2-deoxyuridine 5’-monophosphate pools and DNA synthesis in solid mouse L1210 and rat Walker 256 tumors. Cancer Res 38: 2325–2331

    PubMed  CAS  Google Scholar 

  114. Evans RM, Laskin JD, Hakala MT (1981) Effect of excess folates and deoxyinosine on the activity and site of action of 5-fluorouracil. Cancer Res 41: 3288

    PubMed  CAS  Google Scholar 

  115. Peters GJ, Laurensse E, Leyva A, Lankelma J, Pinedo HM (1986) Sensitivity to human, murine and rat cells to 5-fluorouracil and 5’-deoxy-5-fluorouridine in relation to drug-metabolizing enzymes. Cancer Res 46: 20–28

    Article  PubMed  CAS  Google Scholar 

  116. Sweeny DJ, Barnes S, Heggie GD, Diasio RB (1987) Metabolism of 5-fluorouracil to an N-cholyl-2-fluoro-β-alanine conjugate: previously unrecognized role for bile acids in drug conjugation. Proc Natl Acad Sci USA 84: 5439–5443

    Article  PubMed  CAS  Google Scholar 

  117. Caradonna SJ, Cheng Y-C (1980) The role of deoxyuridine triphosphate nucleotidohydrolase, uracil-DNA glycosylase and DNA polymerase alpha in the metabolism of FUDR in human tumor cells. Mol Pharmacol 18: 513–520

    PubMed  CAS  Google Scholar 

  118. Tuchman M, Stoeckeler JS, Kiang DT, O’Dea RF, Ramna-raine ML, Mirkin BL (1985) Familial pyrimidinemia and pyrimidinuria associated with severe fluorouracil toxicity. N Engl J Med 313: 245–249

    Article  PubMed  CAS  Google Scholar 

  119. Schuetz JD, Wallace HJ, Diasio RB (1984) 5-Fluorouracil incorporation into DNA of CF-1 mouse bone marrow cells as a possible mechanism of toxicity. Cancer Res 44: 1358–1363

    PubMed  CAS  Google Scholar 

  120. Fraile RJ, Baker LH, Buroker TR (1980) Pharmacokinetics of 5-fluorouracil administered orally, by rapid intravenous and by slow infusion. Cancer Res 40: 2223–2228

    PubMed  CAS  Google Scholar 

  121. Danhauser LL, Rustum YM (1979) A method for continuous drug infusion in unrestrained rats: its application in evaluating the toxicity of 5-fluorouracil/thymidine combinations. J Lab Clin Med 93:1047–1053

    PubMed  CAS  Google Scholar 

  122. Harris BE, Song R, Soong SJ, Diasio RB (1989) Circadian variation of 5-fluorouracil catabolism in isolated perfused rat liver. Cancer Res 19: 6610–6614

    Google Scholar 

  123. Harris BE, Song R, He Y-J, Soong S-J, Diasio RB (1988) Circadian rhythm of rat liver dihydropyrimidine dehydrogenase. Possible relevance to fluoropyrimidine chemotherapy. Biochem Pharmacol 37: 4759–4762

    Article  PubMed  CAS  Google Scholar 

  124. Tuchman M, Roemeling R von, Lanning R, Sothern RB, Hrushesky WJM (1988) Source of variability of dihydropyrimidine dehydrogenase (DPD) activity in human blood mononuclear cells. Annu Rev Chronopharmacol 5: 399–402

    Google Scholar 

  125. Harris BE, Song R, Diasio RB (1989) Circadian variation (CV) of dihydropyrimidine dehydrogenase (DPD) activity and plasma 5-fluorouracil (FUra) levels in cancer patients receiving FUra by protracted continuous infusion. Proc Am Assoc Cancer Res 30: 247

    Google Scholar 

  126. Petit E, Milano G, Levi F, Thyss A, Bailleul F, Schneider M (1988) Circadian rhythm-varying plasma concentration of 5-fluorouracil during a five-day continuous venous infusion at a constant rate in cancer patients. Cancer Res 48: 1676–1679

    PubMed  CAS  Google Scholar 

  127. Boughattas NA, Levi F, Hecquet B, Lemaigre G, Roulon A, Fournier C, Reinberg A (1988) Circadian time dependence of murine tolerance for carboplatin. Toxicol Appl Pharmacol 96: 233–247

    Article  PubMed  CAS  Google Scholar 

  128. Boughattas NA, Levi F, Fournier C, Lemaigre G, Roulon A, Hecquet B, Mathe G, Reinberg A (1989) Circadian rhythm in toxicities and tissue uptake of 1,2-diammino- cy-clohexane (trans-1) oxalatoplatinum (II) in mice. Cancer Res 49: 3362–3368

    PubMed  CAS  Google Scholar 

  129. Tuchman M, Roemeling RV, Hrushesky WJM, O’Dea RF (1989) Dihydropyrimidine dehydrogenase activity in human blood mononuclear cells. Enzyme 42:15–24

    PubMed  CAS  Google Scholar 

  130. Lévi F, Halberg F, Haus E, Sanchez de la Pena S, Sothern R, Halberg E, Hrushesky W, Brown H, Scheving L, Kennedy BJ (1980) Synthetic adrenocorticotropin for optimizing murine circadian chronotolerance for Adriamycin. Chronobiologia 7: 227–244

    PubMed  Google Scholar 

  131. Levi FA, Canon C, Touitou Y, Reinberg A, Mathe G (1988) Seasonal modulation of the circadian time structure of circulating T and natural killer lymphocyte subsets from health subjects. J Clin Invest 81: 407–413

    Article  PubMed  CAS  Google Scholar 

  132. Levi F, Bailleul F, Chevelle C, Benavides M, Missett JL, Le Saunier F, Despax R, Ribaud P, Machover D, Jasmin C, Regensberg C, Reinberg A, Mathe G (1987) Chronotherapy of ovarian cancer with 4’tetrahydropyranyl adriamycin (THP) and cisdichlorodiammine platinum (CDDP). Proc Am Soc Clin Oncol 6:119

    Google Scholar 

  133. Burns RE (1981) Circadian rhythmicity in DNA synthesis in untreated mice as a basis for improved chemotherapy. Cancer Res 41: 2795–2802

    PubMed  CAS  Google Scholar 

  134. Hrushesky WJM (1987) The rationale for non-zero order drug delivery using automatic, computer based drug delivery systems (chronotherapy). J Biol Res Modif 6: 587–598

    CAS  Google Scholar 

  135. Roemeling R, Hrushesky WJM (1987) Circadian shaping of FUDR infusion reduces toxicity even at high-dose intensity. Proc Am Soc Clin Oncol 6: 293

    Google Scholar 

  136. Roemeling R, Hrushesky WJM, Kennedy BJ, Buchwald H (1987) Programmed automatic FUDR chronotherapy improves therapeutic index. Surg Forum 27: 401–402

    Google Scholar 

  137. Edmunds LN (1978) clocked cell cycle clocks: implications toward chronopharmacology and aging. In: Samis HV Jr, Capoblanco S (eds) Aging and biological rhythms. Plenum, New York, pp 125–184

    Google Scholar 

  138. Haen E, Golly I (1986) Circadian variation in the cytochrome P-450 system of rat liver. Annu Rev Chronopharmacol 3: 357–360

    CAS  Google Scholar 

  139. Langevin T, Young J, Waler K, Roemeling R, Nygaard S, Hrushesky WJM (1987) The toxicity of tumor necrosis factor (TNF) is reproducibly different at specific times of the day. Proc Am Assoc Cancer Res 28:281

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hrushesky, W.J.M., März, W.J. (1992). Chronochemotherapy of Malignant Tumors: Temporal Aspects of Antineoplastic Drug Toxicity. In: Touitou, Y., Haus, E. (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78734-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78734-8_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78736-2

  • Online ISBN: 978-3-642-78734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics