Skip to main content

Abstract

A host of experiments involving mainly rats and hamsters have led to the recognition of the suprachiasmatic nuclei (SCN) of the hypothalamus as the site of an endogenous circadian oscillator in mammals (Rietveld and Groos 1980; Meijer and Rietveld 1989).Using an autoradiographic tracing method Moore (1973) demonstrated a direct neuronal connection between the retina and the SCN in the rat, the retinohypothalamic projection (RHP). In addition to this anatomical finding there is other empirical support for the assumption that the SCN are a major pacemaker. Many behavioural circadian rhythms are abolished by complete bilateral SCN lesions or surgical islation (Rusak and Zucker 1979). Electrical stimulation of the SCN alters the phase of circadian rhythms in locomotor activity in rodents (Rusak and Groos 1982). With the aid of the 2-DG method, Schwartz et al. (1980) demonstrated a circadian rhythm in metabolic activity in the SCN, glucose utilization being high during the light period. No other brain area exhibits a similar rhythm. In accordance with this are electrophysiological studies (In- ouye and Kawamura 1979) showing that in vivo and in vitro the multiunit activity within the SCN is high during the light period and low during darkness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar-Roblero R, Garcia-Hernandez F, Aguilar R, Arankow-sky-Sandoval G, Drucker-Colin R (1986) Suprachiasmatic nucleus transplants function as an endogenous oscillator only in constant darkness. Neurosci Lett 69:47–52

    PubMed  CAS  Google Scholar 

  • Albers HE, Ferris CF (1984) Neuropeptide Y: role in light-dark cycle entrainment of hamster circadian rhythms. Neurosci Lett 50:163–168

    PubMed  CAS  Google Scholar 

  • Albers HE, Ferris CF, Leeman SE, Goldman BD (1984 a) Avian pancreatic polypeptide phase shifts hamster circadian rhythms when injected into the suprachiasmatic region. Science 223: 833–835

    PubMed  CAS  Google Scholar 

  • Albers HE, Lydic R, Gander PH, Moore-Ede MC (1984 b) Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Res 300: 275–284

    PubMed  CAS  Google Scholar 

  • Aschoff J (1965) The phase-angle difference in circadian periodicity. In: Aschoff J (ed) Circadian clocks. North-Holland, Amsterdam, pp 263–276

    Google Scholar 

  • Aschoff J (1986) Circadian activity rhythm in hamsters unaffected by imipramine. In: Hildebrandt G, Moog An R, Raschke F (eds) Chronobiology and chronomedicine. Lang, Frankfurt, pp 243–247

    Google Scholar 

  • Assenmacher I (1982) CNS structures controlling circadian neuroendocrine and activity rhythms in rats. In: Aschoff J, Daan S, Groos GA (eds) Vertebrate circadian system. Springer, Berlin Heidelberg New York, pp 87–96

    Google Scholar 

  • Berk ML, Finkelstein J A (1981) An autoradiographic determination of the efferent projections of the suprachiasmatic nucleus of the hypothalamus. Brain Res 226:1–13

    PubMed  CAS  Google Scholar 

  • Bethea CL, Neill J (1980) Lesions of the suprachiasmatic nuclei abolish the cervically stimulated prolactin surges in the rat. Endocrinology 107:1–5

    PubMed  CAS  Google Scholar 

  • Boer GJ, Gash DM, Dick L, Schluter N (1985) Vasopressin neuron survival in neonatal Brattleboro rats; critical factors in graft development and innervation of the host brain. Neu-roscience 15:1087–1109

    CAS  Google Scholar 

  • Bons N, Combes A, Szafarczyk A, Assenmacher I (1983) Ef-ferences extrahypothalamiques du noyau suprachiasmatique chez le rat. CR Acad Sci [III] 297 (111): 347–350

    CAS  Google Scholar 

  • Boulos Z, Rosenwasser AM, Terman M (1980) Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res 1: 39–65

    PubMed  CAS  Google Scholar 

  • Branchey L, Weinberg U, Branchey M, Linkowsky P, Mendel-wicz J (1982) Simultaneous study of 24-hour patterns of melatonin and Cortisol secretion in depressed patients. Neuro-psychobiology 8: 225–232

    CAS  Google Scholar 

  • Brown R, Kocsis JH, Caroff S, Amsterdam J, Winokur A, Stokes PE, Frazer A (1985) Differences in nocturnal melatonin secretion between melancholic depressed patients and controls. Am J Psychiatry 142: 811–816

    PubMed  CAS  Google Scholar 

  • Card JP, Moore RY (1982) Ventral lateral geniculate nucleus ef-ferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. J Comp Neurol 206: 390–396

    PubMed  CAS  Google Scholar 

  • Card JP, Moore RY (1984) The suprachiasmatic nucleus of the golden hamster: immunohistochemical analysis of cell and fiber distribution. Neuroscience 13: 415–431

    PubMed  CAS  Google Scholar 

  • Card JP, Brecha N, Karten HJ, Moore RY (1981) Immonocyto-chemical localization of vasoactive intestinal polypeptide containing cells and processes in the suprachiasmatic nucleus of the rat: light and electron microscopic analysis. J Neurosci 1:1289–1303

    PubMed  CAS  Google Scholar 

  • Craig C, Tamarkin L, Garrick N, Wehr TA (1981) Long-term and short-term effects of clorgyline (a monoamineoxidase type A inhibitor) on locomotor activity and on pineal melatonin in the hamster. Abstract no. 2294.14, Society for Neuroscience 11th Annual Meeting

    Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol 106: 267–290

    Google Scholar 

  • Dark J (1980) Partial isolation of the suprachiasmatic nuclei: effects in the circadian rhythms of rat drinking behavior. Physiol Behav 25: 863–873

    PubMed  CAS  Google Scholar 

  • Decoursey PJ, Buggy J (1986) Restoration of locomotor rhythmicity in SCN-lesioned golden hamsters by transplantation of fetal SCN. Neurosci Abstr 12: 210

    Google Scholar 

  • Delius K, Gunderoth-Palmowski M, Krause I, Engelmann W (1984) Effects of lithium salts on the behaviour and the circadian system of Mesocricetus auratus W. J Interdiscip Cycle Res 15: 289–299

    CAS  Google Scholar 

  • Donaldson J A, Stephan FK (1981) Entrainment of circadian rhythms: retinofugal pathways and unilateral suprachiasmatic nucleus lesions. Physiol Behav 29:1161–1169

    Google Scholar 

  • Drucker-Colin R, Aguilar-Roblero R, Garcia-Hernandez F, Fernandez-Cancinoa F, Rattoni FB (1984) Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of le-sioned rats. Brain Res 311: 353–357

    PubMed  CAS  Google Scholar 

  • Eastman CI, Mistlberger RE, Rechtschaffen A (1983) Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav 32: 357–368

    Google Scholar 

  • Engelmann W (1973) A slowing down of circadian rhythms by lithium ions. Z Naturforsch [C] 28:733–736

    CAS  Google Scholar 

  • Eskes GA (1984) Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res 293:127–141

    PubMed  CAS  Google Scholar 

  • Eskes GA, Rusak B (1985) Horizontal knife cuts in the suprachiasmatic area prevent hamster gonadal responses to photo-period. Neurosci Lett 61: 261–266

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Hall H, Saaf J, Ask A-L, Ross SB (1985) Pharmacological manipulation of biochemical measured rhythms in the mammalian central nervous system. In: Redfern PH, Campbell IC, Davies TA (eds) Circadian rhythms in the central nervous system. MacMillan, London, pp 111–121

    Google Scholar 

  • Groos G, Hendriks J (1979) Regularly firing neurones in the rat suprachiasmatic nucleus. Experientia 35:1597–1598

    PubMed  CAS  Google Scholar 

  • Gueldner FH (1976) Synaptology of the rat suprachiasmatic nucleus. Cell Tissue Res 165: 509–544

    Google Scholar 

  • Haeusler A, Hauser K, Meeker JB (1985) Effects of subchronic administration of psychoactive substances on the circadian rhythm of urinary corticosterone excretion in rats. Psycho-neuroendocrinology 10: 421–429

    CAS  Google Scholar 

  • Han SZ (1984) Lithium chloride changes sensitivity of hamster rhythm to light pulses. J Interdiscip Cycle Res 15:139–146

    CAS  Google Scholar 

  • Hanada Y, Kawamura H (1981) Sleep-waking electrocortico-graphic rhythms in chronic cerveau isole rats. Physiol Behav 26: 725–728

    PubMed  CAS  Google Scholar 

  • Hofmann K, Gunderoth-Palmowski M, Wiedenmann G, Engelmann W (1978) Further evidence for period lengthening effect of Li + on circadian rhythms. Z Naturforsch [C] 33: 231–234

    CAS  Google Scholar 

  • Honma K, Honma S (1986) Effects of methamphetamine on development of circadian rhythms in rats. Brain Dev 8: 397–401

    PubMed  CAS  Google Scholar 

  • Honma K, Honma S, Hiroshige T (1986) Disorganization of the rat activity rhythm by chronic treatment with methamphetamine. Physiol Behav 38: 687–695

    PubMed  CAS  Google Scholar 

  • Honma S, Honma K, Hiroshige T (1984) Dissociation of circadian rhythms in rats with a hypothalamic island. Am J Physiol 246: R949-R954

    PubMed  CAS  Google Scholar 

  • Ibuka M, Inouye S, Kawamura H (1977) Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res 122: 33–47

    PubMed  CAS  Google Scholar 

  • Inouye SI, Kawamura H (1979) Persistence of circadian rhyth-micity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76: 5962–5966

    PubMed  CAS  Google Scholar 

  • Johnsson A, Engelmann W, Pflug B, Klempke W (1980) Influence of lithium ions on human circadian rhythms. Z Naturforsch [C] 35: 503–507

    CAS  Google Scholar 

  • Kavaliers M (1981) Period lengthening and disruption of socially facilitated circadian activity rhythms of goldfish by lithium. Physiol Behav 27: 625–628

    PubMed  CAS  Google Scholar 

  • Kawakami M, Arita J, Yoshioka E (1980) Loss of estrogen induced daily surges of prolactin and gonadotropin by suprachiasmatic nucleus lesions in ovariectomized rats. Endocrinology 106:1087–1092

    PubMed  CAS  Google Scholar 

  • Kelly JP (1981) Reactions of neurons to injury. In: Kandell ER, Schwartz JH (eds) Principles of neural science. Elsevier, New York, pp 138–146

    Google Scholar 

  • Klein DC, Moore RY (1979) Pineal-N-acetyltransferase and hydroxyindole-o-methyltransferase. Control by the retino hypothalamic tract and the suprachiasmatic nucleus. Brain Res 174: 245–262

    PubMed  CAS  Google Scholar 

  • Kraeuch F, Wirz-Justice A, Feer H (1986) Food selection in methamphetamine treated rats: dependence on circadian period. In: Hildebrandt G, Moog An R, Raschke F (eds) Chronobiology and chronomedicine. Lang, Frankfort, pp 247–252

    Google Scholar 

  • Krieger DT (1980) Ventromedial hypothalamic nucleus lesions abolish food-shifted circadian adrenal and temperature rhythmicity. Endocrinology 106: 649–654

    PubMed  CAS  Google Scholar 

  • Kripke DF (1983) Phase advance theories for affective illnesses. In: Wehr TA, Goodwin FK (eds) Circadian rhythms in psychiatry. Boxwood, Pacific Grove, pp 41–69

    Google Scholar 

  • Kripke DF, Wyborney VW (1980) Lithium slows at circadian rhythms. Life Sci 26:1319–1321

    PubMed  CAS  Google Scholar 

  • Kripke DF, Mullaney DJ, Atkinson M, Wolfe S (1978) Circadian rhythm disorders in manic-depressives. Biol Psychiatry 13: 335–348

    PubMed  CAS  Google Scholar 

  • Kripke DF, Judd LL, Hubbard B, Janowsky DS, Huey LY (1979) The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects. Biol Psychiatry 14: 545–548

    PubMed  CAS  Google Scholar 

  • Kronauer RE, Czeisler CA, Pilato SF, Moore-Ede C, Weitzman ED (1982) Mathematical model of the human circadian system with two interacting oscillators. Am J Physiol 242: R3-R17

    PubMed  CAS  Google Scholar 

  • Kucera P, Favrod P (1979) Suprachiasmatic nucleus projection to the mesencephalic grey in the woodmouse (Apodemus syl-vaticus L.). Neuroscience 4:1705–1715

    PubMed  CAS  Google Scholar 

  • Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization with the host brain. J. Neurosci 7:1626–1638

    PubMed  CAS  Google Scholar 

  • Lewy AJ, Sack RA, Singer CL (1984) Assessment and treatment of chronobiologic disorders using plasma melatonin levels and bright light exposure: the clock-gate model and the phase response curve. Psychopharmacol Bull 20: 561–565

    PubMed  CAS  Google Scholar 

  • Lewy AJ, Sack RL, Singer CL (1985) Treating phase typed chronobiologic sleep and mood disorders using appropriately time bright artificial light. Psychopharmacol Bull 21: 368–372

    PubMed  CAS  Google Scholar 

  • Liou SY, Shibata S, Iwasaki K, Ueki S (1986) Optic nerve stimulation-induced increase of release of 3H-glutamate and 3H aspartate but not of 3H-GABA from the suprachiasmatic nucleus in slices or rat hypothalamus. Brain Res Bull 16: 527–531

    PubMed  CAS  Google Scholar 

  • Luiten PG, Room P (1980) Interrelations between lateral, dor-somedial and ventromedial hypothalamic nuclei. Brain Res 190: 321–332

    PubMed  CAS  Google Scholar 

  • McEachron DK (1984) Testing the circadian hypothesis of affective disorders: lithium’s effect on selected circadian rhythms in rats. Thesis, University of California, San Diego

    Google Scholar 

  • McEachron DL, Kripke DF, Hawkins R, Haus E, Pavlinac D, Deftos L (1982) Lithium delays biochemical circadian rhythms in rats. Neuropsychobiology 8:12–29

    PubMed  CAS  Google Scholar 

  • Meijer JH, Groos GA (1988) Responsiveness of suprachiasmatic and ventral lateral geniculate neurons to serotonin and imipramine: a micro-iontophoretic study in normal and imi-pramine-treated rats. Brain Res Bull 20: 89–96

    PubMed  CAS  Google Scholar 

  • Meijer JH, Rietveld WJ (1989) Neurophysiology of the Suprachiasmatic Circadian Pacemaker in rodents. Physiological Reviews 69: 671–707

    PubMed  CAS  Google Scholar 

  • Meijer JH, Rusak B, Harrington ME (1984) Geniculate stimulation phase shifts hamster circadian rhythms. Soc Neurosci Abstr 10: 502

    Google Scholar 

  • Moore RY (1973) Retino-hypothalamic projection in mammals. A comparative study. Brain Res 49: 403–409

    PubMed  CAS  Google Scholar 

  • Moore RY (1982) The suprachiasmatic nucleus and the organization of a circadian system. Trends Neurosci 5: 404–407

    Google Scholar 

  • Moore RY (1983) Organization of function of a central nervous system circadian oscillator: the suprachiasmiatic hypothalamic nucleus. Fed Proc 42: 2783–2789

    PubMed  CAS  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of circadian adrenal corti-costerone rhythm following suprachiasmatic nucleus lesions in the rat. Brain Res 42: 201–206

    PubMed  CAS  Google Scholar 

  • Moore RY, Card JP, Riley JN (1980) The suprachiasmatic nucleus: neuronal ultrastructure. Neurosci Abstr 6: 758

    Google Scholar 

  • Moore RY, Gustafson EL, Card JP (1984) Identical immuno-reactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian polypeptide, molluscan cardioexci-tatory peptide and neuropeptide Y. Cell Tissue Res 236: 41–46

    PubMed  CAS  Google Scholar 

  • Morin LP, Johnson RF, Moore RY (1989) Two brain nuclei controlling circadian rhythms are identified by GFAP immu-noreactivity in hamsters and rats. Neurosci Lett 99: 55–60

    PubMed  CAS  Google Scholar 

  • Murphy S, Pearce B (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22: 381–394

    PubMed  CAS  Google Scholar 

  • Nishio T, Shiosaka S, Nakaga H, Sakumoto T, Satoh K (1979) Circadian feeding rhythm after hypothalamic knife cut isolating suprachiasmatic nucleus. Physiol Behav 23:763–769

    PubMed  CAS  Google Scholar 

  • Nunez AA, Casati MJ (1979) The role of the efferent connections of the suprachiasmatic nucleus in the control of circadian rhythms. Behav Neurol Biol 25: 263–267

    CAS  Google Scholar 

  • Nunez AA, Stephan FK (1977) The effects of hypothalamic knife cuts on drinking rhythms and on the estrous cycle of the rat. Behav Biol 20: 224–234

    PubMed  CAS  Google Scholar 

  • Possidente B, Exner RH (1986) Gene-dependent effect of lithium on circadian rhythms in mice (Mus musculus). Chrono-biol Int 3:17–21

    CAS  Google Scholar 

  • Possidente B, Hegmann JP (1982) Gene differences modify As-choff’s rule in mice. Physiol Behav 28:199–200

    PubMed  CAS  Google Scholar 

  • Reinhard P (1983) Die Wirkung von Lithium auf das circadiane Verhalten von Schaben und Hamstern in Lichtprogrammen verschiedener Periodenlange. Thesis, University of Tubingen

    Google Scholar 

  • Reinhard P (1985) Effect of lithium chloride on the lower range of entrainment in Syrian hamsters. J Interdiscip Cycle Res 16: 227–237

    CAS  Google Scholar 

  • Rietveld WJ (1981) The functional significance of a retino-hy-pothalamo-retinal loop for the circadian eating activity of rabbits. Behav Brain Res 2: 274–275

    Google Scholar 

  • Rietveld WJ (1984) The effect of partial lesions of the hypothalamic suprachiasmatic nucleus on the circadian control of behaviour. In: Reinberg A, Smolensky M, Labreque G (eds) Annual review of chronopharmacology. Pergamon, Oxford

    Google Scholar 

  • Rietveld WJ, Groos GA (1980) The central neural regulation of circadian rhythms. NATO Adv Study Inst [D] 3:189–204

    Google Scholar 

  • Rietveld WJ, Groos GA (1981) The role of the suprachiasmatic nucleus afferents in the central regulation of circadian rhythms. In: von Mayersbach H, Scheving LE, Pauly JE (eds) Biological rhythms in structure and function. Liss, New York

    Google Scholar 

  • Rietveld WJ, Wirz-Justice A (1986) The effect of chronic application of methamphetamine in suprachiasmatic lesioned rats. In: Hildebrandt G, Moog An R, Raschke F (eds) Chrono-biology and chronomedicine. Lang, Frankfort, pp 252–257

    Google Scholar 

  • Rietveld WJ, ten Hoor F, Kooij M, Flory W (1978) Changes in 24-hours fluctuations of feeding behaviour during hypothalamic hyperphagia in rats. Physiol Behav 21:15–622

    Google Scholar 

  • Rietveld WJ, Kooij M, Aardoom OR, Boon ME (1983) The role of the dorsomedial hypothalamic nucleus in circadian control of food intake in rats. Neurosci Lett [Suppl] 14: 310–311

    Google Scholar 

  • Rietveld WJ, Korving J, Wirz-Justice A (1985) The effect of chronic methamphetamine application on the circadian control of behaviour in the rat. J Interdiscip Cycle Res 16: 155–156

    Google Scholar 

  • Rietveld WJ, Hekkens WTJM, Groos GA (1986) Changes in the rat circadian rhythm of food intake after long term application of clorgyline. In: Hildebrandt G, Moog An R, Raschke F (eds) Chronobiology and chronomedicine. Lang, Frankfort, pp 238–243

    Google Scholar 

  • Roberts MH, Bernstein MF, Moore RY (1987) Differentiation of the suprachiasmatic nucleus in fetal rat anterior hypothalamic transplants in oculo. Dev Brain Res 32: 59–66

    Google Scholar 

  • Ruis JF, Rietveld WJ, Buys PJ (1987) Effects of suprachiasmatic nuclei lesions on circadian and ultradian rhythms in body temperature in ocular enucleated rats. J Interdiscip Cycle Res 18: 259–273

    Google Scholar 

  • Rusak B (1977) The role of the suprachiasmatic nuclei in the generation of the circadian rhythms in the golden hamster Mesocricetus auratus. J Comp Physiol 118:145–164

    Google Scholar 

  • Rusak B (1982) Physiological models of the rodents circadian system. In: Aschoff J, Daan S, Groos GA (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 62–74

    Google Scholar 

  • Rusak B, Groos GA (1982) Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science 215:1407–1409

    PubMed  CAS  Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59: 449–526

    PubMed  CAS  Google Scholar 

  • Saleh MA, Haro PJ, Winget CM (1977) Loss of circadian rhythmicity in body temperature and locomotor activity following suprachiasmatic lesions in the rat. J Interdiscip Cycle Res 8: 341–346

    Google Scholar 

  • Sawaki Y, Nihonmatsu I, Kawamura H (1984) Transplantation of the neonatal suprachiasmatic nuclei into rat: with complete bilateral suprachiasmatic lesions. Neurosci Res 1: 67–72

    PubMed  CAS  Google Scholar 

  • Schwartz WJ, Davidsen LC, Smith CB (1980) In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. J Comp Neurol 189:157–167

    PubMed  CAS  Google Scholar 

  • Schwartz WJ, Gross RA, Morton MT (1987) The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci USA 84:1694–1698

    PubMed  CAS  Google Scholar 

  • Simerly RB, Swanson LW (1986) The organization of neural inputs to the medial preoptiv nucleus of the rat. J Comp Neurol 246: 312–342

    PubMed  CAS  Google Scholar 

  • Sims KB, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186:165–183

    PubMed  CAS  Google Scholar 

  • Sodersten P, Hansen S, Srebro B (1981) Suprachiasmatic lesions disrupt the daily rhythmicity in the sexual behavior of normal male rats and of male rats treated neonatally with anti-oestrogen. J Endocrinol 88:125–130

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A (1978) Projections from the parvocel-lular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus. Am J Anat 153: 391–430

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A (1982) Neuroanatomical organization and connections of the suprachiasmatic nucleus. In: Aschoff J, Daan S, Groos GA (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 75–87

    Google Scholar 

  • Stephan FK, Nunez AA (1977) Elimination of circadian rhythms in drinking, activity, sleep and temperature by isolation of the suprachiasmatic nuclei. Behav Biol 20:1–16

    PubMed  CAS  Google Scholar 

  • Stephan FK, Berkley M, Moss R (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6: 2625–2641

    PubMed  CAS  Google Scholar 

  • Stoynev AG, Ikonomov OC, Usonoff KG (1982) Feeding pattern and light-dark variations in water intake and renal excretion after suprachiasmatic nuclei lesions in rats. Physiol Behav 29: 35–40

    PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM (1975) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160:1–12

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980 a) A direct projection from the ventromedial nucleus and the retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci Lett 17: 307–312

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980b) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde double-labelling methods. J Comp Neurol 194: 555–570

    PubMed  CAS  Google Scholar 

  • Takahashi JS, Turek FW (1987) Anisomysin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker. Brain Res 405–199-203

    Google Scholar 

  • Ueda S, Kawata M, Sano Y (1983) Identification of serotonin-and vasopressin immunoreactivities in the suprachiasmatic nucleus of four mammalian species. Cell Tissue Res 234:237–248

    PubMed  CAS  Google Scholar 

  • Van den Poll AN (1980) The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol 191: 661–702

    Google Scholar 

  • Van den Poll AN, Tsujimoto KL (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocyto-chemical analysis of 25 neuronal antigens. Neuroscience 15: 1049–1086

    Google Scholar 

  • Von Rommelspacher H, Bade P, Bludau J, Strauss S (1976) Hemmung der Monoaineoxidase und Tag-Nacht-Rhythus: Korrelation zwischen physiologischen und biochemischen Parametern. Arzneimittelforschung 26:1078–1080

    PubMed  CAS  Google Scholar 

  • Watts AG, Swanson LW (1987) Efferent projection of the suprachiasmatic nucleus. II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immuno-histochemistry in the rat. J Comp Neurol 258: 230–252

    PubMed  CAS  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus. I. Studies using anterograde transport of phaseolus vulgaris leucoagglutin in the rat. J Comp Neurol 258: 204–229

    PubMed  CAS  Google Scholar 

  • Wiegand SJ, Gash DM (1988) Organization and efferent connections of transplanted suprachiasmatic nuclei. J Comp Neurol 267: 562–579

    PubMed  CAS  Google Scholar 

  • Wiegand SJ, Terasawa E (1982) Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendo-crinology 34: 395–404

    CAS  Google Scholar 

  • Wirz-Justice A, Campbell IC (1982) Antidepressant drugs can slow or dissociate circadian rhythms. Experientia 38: 1301–1309

    PubMed  CAS  Google Scholar 

  • Wirz-Justice A, Groos GA, Wehr TA (1982) The neuropharmacology of circadian timekeeping in mammals. In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 183–193

    Google Scholar 

  • Zatz M, Brownstein MJ (1981) Injection of alpha-bungaroto-xine near the suprachiasmatic nucleus blocks the effects of light on nocturnal pineal enzyme activity. Brain Res 213:438–442

    PubMed  CAS  Google Scholar 

  • Zatz M, Herkenham MA (1981) Intraventricular carbachol mimics the phase shifting effects of light on the circadian rhythm of wheel-running activity. Brain Res 212: 234–238

    PubMed  CAS  Google Scholar 

  • Zimmerman NH, Menaker M (1979) Neural connections of the sparrow pineal: role in circadian control of activity. Science 190: 477–479

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rietveld, W.J. (1992). The Suprachiasmatic Nucleus and Other Pacemakers. In: Touitou, Y., Haus, E. (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78734-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78734-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78736-2

  • Online ISBN: 978-3-642-78734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics