Skip to main content

Abstract

Bone marrow is the production site for all types of blood cells, which are released into the peripheral blood according to the needs of the body, mediated through different feedback mechanisms. The production occurs as a combination of cell proliferation and gradual maturation, until the end stage is reached with a population of mature cells that can exert their specialized functions but are no longer capable of cell proliferation [1]. It takes approximately 14 days from immature stem cells starting proliferation until mature cells result [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laerum OD, Smaaland R, Sletvold O (1989) Rhythms in blood and bone marrow: Potential therapeutic implications. In: Lemmer B (ed) Chronopharmacology. Cellular and biochemical interactions. Dekker, New York

    Google Scholar 

  2. Gordon MY, Barrett AJ, Gordon-Smith EC (1985) Bone marrow disorders. The biological basis of clinical problems. Blackwell Scientific, Oxford

    Google Scholar 

  3. Lohrman H-P, Schreml W (1982) Cytotoxic drugs and the granulopoietic system. Springer, Berlin Heidelberg New York (Recent results in cancer research, vol 81)

    Google Scholar 

  4. Pollak MN, Brennan LV, Antman K, Elias A, Cannistra SA, Socinsky MA, Schnipper LE, Frei E, Griffin JD (1989) Recombinant GM-CSF in myelosuppression of chemotherapy. N Engl J Med 320: 253–254

    Google Scholar 

  5. Frei E et al. (1980) Dose: a critical factor in cancer chemotherapy Am J Med 69:585–593

    PubMed  Google Scholar 

  6. Hryniuk W, Bush H (1984) The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 2:1281–1288

    PubMed  CAS  Google Scholar 

  7. de Vita VTJ (1986) Dose-response is alive and well (editorial). J Clin Oncol 4:1157–1159

    Google Scholar 

  8. Hryniuk W, Figueredo A, Goodyear M (1987) Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer. Semin Oncol 14: (Suppl 4) 3–11

    PubMed  CAS  Google Scholar 

  9. Cardoso SS, Scheving LE, Halberg F (1970) 1. Mortality of mice as influenced by the hour of day of drug (ara-C) administration. Pharmacologist 12: 302

    Google Scholar 

  10. Haus E, Halberg F, Scheving LE, Pauly JE, Cardoso S, Kuhl JFW, Sothern RB, Shiotsuka RN, Hwang DS (1972) Increased tolerance of leukemic mice to arabinosyl cyto-sine with schedule adjusted to circadian system. Science 177: 80–82

    PubMed  CAS  Google Scholar 

  11. Scheving LE, Haus E, Kuhl JFW, Pauly JE, Halberg F, Cardoso SS (1976) Close reproduction by different laboratories of characteristics of circadian rhythms in 1-/3-D-arabinofuranosylcytosine tolerance by mice. Cancer Res 36:1133–1137

    PubMed  CAS  Google Scholar 

  12. Scheving LE, Pauly JE, Tsai TH, Scheving LA (1983) Chronobiology of cell proliferation. Implication for cancer chemotherapy. In: Reinberg A, Smolensky MH (eds) Biological rhythms and medicine. Cellular, metabolic, physio-pathologic, and pharmacologic aspects. Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Kühl JFK, Haus E, Halberg F, Scheving LE, Pauly JE, Cardoso SS, Rosene G (1974) Experimental chronotherapy with ara-C; comparison of murine ara-C tolerance on differently timed treatment schedules. Chronobiologia 1: 316–317

    Google Scholar 

  14. Scheving LE, Burns ER, Halberg F, Pauly JE (1980) Combined chronochemotherapy of L1210 leukemic mice using l-b-D-arabino-furanosylcytosine, cyclophosphamide, vincristine, methylprednisolone, and cis-platinum. Chronobiologia 17: 33–40

    Google Scholar 

  15. Scheving LE, Burns ER, Pauly JE, Halberg F (1980) Circadian bioperiodic response of mice bearing advanced L1210 leukemia to combination therapy with adriamycin and cyclophosphamide. Cancer Res 40:1511–1515

    PubMed  CAS  Google Scholar 

  16. Roemeling R, Hrushesky WJM (1990) Determination of the therapeutic index of floxuridine by its circadian infusion pattern. JNCI 82: 386–393

    Google Scholar 

  17. Scheving LE, Burns ER, Pauly JE, Halberg F, Haus E (1977) Survival and cure of leukemic mice after optimization of cancer treatment with cyclophosphamide and ara-C. Cancer Res 37: 3648–3655

    PubMed  CAS  Google Scholar 

  18. Hrushesky WJM (1985) Circadian timing of cancer chemotherapy. Science 228: 73–75

    PubMed  CAS  Google Scholar 

  19. Kerr DJ, Lewis C, O’Neill B, Lawson N, Blackie RG, Newell DR, Boxall F, Cox J, Rankin EM, Kaye SB (1990) The myelotoxicity of carboplatin is influenced by the time of its administration. Hematol Oncol 8: 59–63

    PubMed  CAS  Google Scholar 

  20. Hrushesky WJM, von Roemeling R, Sothern RB (1990) Preclinical and clinical cancer chronotherapy. In: Arendt J, Minors DS, Waterhouse JM (eds) Biological rhythms in clinical practice. Wright, London

    Google Scholar 

  21. Rivard GE, Infante-Rivard C, Hoyoux C, Champagne J (1985) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: better in the evening. Lancet 2: 1264–1266

    PubMed  CAS  Google Scholar 

  22. Nienhuis AW (1988) Hematopoietic growth factors. Biologic complexicity and clinical promise. N Engl J Med 318: 916–918

    PubMed  CAS  Google Scholar 

  23. Dethmers JK, Meister A (1981) Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc Natl Acad Sci USA 78: 7492–7496

    PubMed  CAS  Google Scholar 

  24. Lee FYF, Allalunis-Turner MJ, Siemann DW (1987) Depletion of tumor versus normal tissue glutathione by bu-thionine sulfoximine. Br J Cancer 56: 33–38

    PubMed  CAS  Google Scholar 

  25. Lee FYF, Siemann DW, Allalunis-Turner MJ, Keng PC (1988) Glutathione contents in human and rodent tumor cells in various phases of the cell cycle. Cancer Res 48: 3661–3665

    PubMed  CAS  Google Scholar 

  26. Friedman HS, Colvin OM, Griffith OW, Lippitz B, Elion GB, Schold JSC, Hilton J, Bigner DD (1989) Increased melphalan activity in intracranial human medulloblastoma and glioma xenografts following buthionine sulfoximine-mediated gluthatione depletion. JNCI 81: 524–527

    PubMed  CAS  Google Scholar 

  27. Hrushesky WJM (1987) The rationale for non-zero order drug delivery using automatic, computer based drug delivery systems (chronotherapy). J Biol Response Mod 6: 587–598

    PubMed  CAS  Google Scholar 

  28. Arendt J, Minors DS, Waterhouse JM (1989) Basic concepts and implications. In: Arendt J, Minors DS, Water-house JM (eds) Biological rhythms in clinical practice. Wright, London

    Google Scholar 

  29. Butcher EC (1990) Cellular and molecular mechanisms that direct leukocyte traffic. Am J Pathol 136: 3–11

    PubMed  CAS  Google Scholar 

  30. Lewis AD, Hayes JD, Wolf CR (1988) Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis 9:1283–1287

    PubMed  CAS  Google Scholar 

  31. Pizzarello DJ, Witcofski RL (1970) A possible link between diurnal variations in radiation sensitivity and cell division in bone marrow of male mice. Radiology 97: 165–167

    PubMed  CAS  Google Scholar 

  32. Burns ER (1981) Orcadian rhythmicity in DNA synthesis in untreated and saline-treated mice as a basis for improved chronochemotherapy. Cancer Res 41: 2795–2802

    PubMed  CAS  Google Scholar 

  33. Scheving LE, Pauly JE (1973) Cellular mechanisms involving biorhythms with emphasis on those rhythms associated with the S and M stages of the cell cycle. Int J Chronobiol 1: 269–286

    PubMed  CAS  Google Scholar 

  34. Scheving LE, Burns ER, Pauly JE, Tsai TH (1978) Orcadian variation in cell division of the mouse alimentary tract, bone marrow, and corneal epithelium, and its possible implication in cell kinetics and cancer chemotherapy. Anat Res 191: 479–486

    CAS  Google Scholar 

  35. Sharkis SJ, LoBue J, Alexander PJ, Rakowitz F, Weitz-Hamburger A, Gordon AS (1971) Orcadian variations in mouse hematopoiesis. Ü. Sex differences in mitotic indices of femoral diaphyseal marrow cells. Proc Soc Exp Biol Med 138: 494–496

    PubMed  CAS  Google Scholar 

  36. Sharkis SJ, Palmer JD, Goodenough J, LoBue J, Gordon AS (1974) Daily variations of marrow and splenic erythro-poiesis, pinna epidermal cell mitosis and physical activity in C57B 1 + 6J mice. Cell Tissue Kinet 7: 381–387

    PubMed  CAS  Google Scholar 

  37. Moskalik KG (1976) Diurnal rhythm of mitotic activity, DNA synthesis, and duration of mitoses in mouse bone marrow cells. Biull Eksp Biol Med 81: 594

    PubMed  CAS  Google Scholar 

  38. Dörmer P, Schmolke W, Muschalik P, Brinkman W (1970) Die DNS-Synthesegeschwindigkeit im Verlaufe der DNS-Synthesephase von Erythroblasten der Maus in vivo. Beitr Pathol 141:174–186

    PubMed  Google Scholar 

  39. Mauer AM (1965) Diurnal variation of proliferative activity in the human bone marrow. Blood 26:1–7

    PubMed  CAS  Google Scholar 

  40. Killmann S-Å, Cronkite EP, Fliedner TM, Bond VP (1962) Mitotic indices of human bone marrow cells. I. Number and cytologic distribution of mitosis. Blood 19: 743–750

    PubMed  CAS  Google Scholar 

  41. Vindeløv LL (1977) Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. Virch Arch [B] 24: 227–242

    Google Scholar 

  42. Gray JW, Dean PN (1980) Display and analysis of flow cytometric data. Ann Rev Biophys Bioeng 9: 509–539

    CAS  Google Scholar 

  43. Ginsberg L, Ludman PF, Anderson JV, Burrin JM, Joplin GF (1988) Does stressful venepuncture explain increased midnight serum Cortisol concentration? Lancet Ü 8622: 1257

    Google Scholar 

  44. Dosik GM, Barlogie B, Göhde W, Johnston D, Tekell JL, Drewinko B (1980) Flow cytometry of DNA content in human bone marrow: a critical reappraisal. Blood 55:734–740

    PubMed  CAS  Google Scholar 

  45. Smaaland R, Lote K, Sletvold O, Bjerknes R, Laerum OD (1989) Orcadian stage dependent variations in the DNA synthesis-phase and G2/M-phase of human bone marrow. Proc Am Assoc Cancer Res 30: 35

    Google Scholar 

  46. Lévi F, Blazcek I, Férle-Vidovic A (1988) Orcadian and seasonal changes in murine bone marrow colony forming cells affect tolerance for 4’tetrahydropyranyladriamycin. Exp Hematol 16: 696–701

    PubMed  Google Scholar 

  47. Paukovits WR, Guigon M, Binder KA, Hergl A, Laerum OD, Schulte-Hermann R (1990) Prevention of hemato-toxic side effects of cytostatic drugs in mice by a synthetic hemoregulatory peptide. Cancer Res 50: 328–332

    PubMed  CAS  Google Scholar 

  48. Stoney PJ, Halberg F, Simpson HW (1975) Orcadian variation in colony-forming ability of presumable intact murine bone marrow cells. Chronobiologia 2: 319

    PubMed  CAS  Google Scholar 

  49. Laerum OD, Aardal NP (1981) Chronobiological aspects of bone marrow and blood cells. In: Mayersbach, Scheving, Pauly (eds) 11th International congress of anatomy, part C, Biological rhythms in structure and function, pp 87–97. Liss, New York

    Google Scholar 

  50. Bartlett P, Haus E, Tuason T, Sackett-Lundeen L, Lakatua D (1982) Circadian rhythm in number of erythroid and granulocytic colony forming units in culture (ECFU-C and GSFU-C) in bone marrow of BDF1 male mice. In: Haus E, Kabat HF (eds) Proc. 15th international conference on chronobiology. Karger, Basel

    Google Scholar 

  51. Aardal NP, Laerum OD, Paukovits WR (1982) Biological properties of partially purified granulocyte extract (cha-lone) assayed in soft agar culture. Virch Arch [B] 38: 253–261

    CAS  Google Scholar 

  52. Aardal NP (1984) Circannual variations of circadian periodicity in murine colony-forming cells (CFU-C). Exp Hematol 12: 61–67

    PubMed  CAS  Google Scholar 

  53. Aardal NP, Laerum OD (1983) Circadian variations in mouse bone marrow. Exp Hematol 11: 792–801

    PubMed  CAS  Google Scholar 

  54. Meytes DMA, Powell WB, Ortega JA, Shore NA, Dukes PP (1980) Constancy of erythroid burst forming unit (BFU-E) levels in the blood of hematologically normal individuals. Exp Hematol 8: 641–644

    PubMed  CAS  Google Scholar 

  55. Ponassi A, Morra L, Bonanni F, Molinari A, Gigli G, Mer-celli M, Sachetti C (1979) Normal range of blood colony-forming cells (CFU-C) in humans: influence of experimental conditions, age, sex and diurnal variations. Blut 39: 257–263

    PubMed  CAS  Google Scholar 

  56. Ross DD, Pollack A, Akman SA, Bachur NR (1980) Diurnal viaration of circulating human myeloid progenitor cells. Exp Hematol 8: 954–960

    PubMed  CAS  Google Scholar 

  57. Verma DS, Fisher R, Spitzer G, Zander AR, McCredie KB, Dicke KA (1980) Diurnal changes in circulating myeloid progenitor cells in man. Am J Hematol 9: 185–192

    PubMed  CAS  Google Scholar 

  58. Harrison DE (1979) Proliferative capacity of erythropoietic stem cell lines and aging: an overview. Mech Ageing Dev 9: 409–426

    PubMed  CAS  Google Scholar 

  59. Williams LH, Udupa KB, Lipschitz DA (1986) Evaluation of the effect of age on hemopoiesis in young and old mice. Exp Hematol 14: 827–832

    PubMed  CAS  Google Scholar 

  60. Sletvold O, Laerum OD (1988) Multipotent stem cell (CFU-S) numbers and circadian variations in aging mice. Eur J Haematol 41: 230–236

    PubMed  CAS  Google Scholar 

  61. Metcalf D, Stevens S (1972) Influence of age and antigenic stimulation on granulocyte and macrophage progenitor cells in the mouse spleen. Cell Tissue Kinet 5: 433–446

    PubMed  CAS  Google Scholar 

  62. Akagawa T, Onari KJPW, Makinodan T (1984) Differential effect on mitotically active and inactive bone marrow stem cells and splenic stem T cells in mice. Cell Immunol 86: 53–63

    PubMed  CAS  Google Scholar 

  63. Sletvold O, Laerum OD, Riise T (1988) Age-related differences and circadian and seasonal variations in myelo-poietic progenitor cell (CFU-GM) numbers in mice. Eur J Haematol 40: 42–49

    PubMed  CAS  Google Scholar 

  64. Custer RP, Ahlfeldt FE (1932) Studies on the structure and function of bone marrow. Ü. Variations in cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17: 960–962

    Google Scholar 

  65. Hartsock RJ, Smith EB, Petty CS (1965) Normal variations with aging of the amount of hematopoietic tissue in the bone marrow of the anterior iliac crest. Am J Clin Pathol 43: 326–331

    PubMed  CAS  Google Scholar 

  66. Dunhill MS, Anderson JA, Whitehead R (1967) Quantitative histologic studies on the age changes in bone. J Pathol Bacterid 94: 275–291

    Google Scholar 

  67. Schroder U, Tougaard L (1977) Age changes in the quality of hematopoietic tissue. Acta Pathol Microbiol Scand Sect A 85: 559–560

    Google Scholar 

  68. Lipschitz DA, Udupa KB, Milton KY, Thompson CO (1984) Effect of age on hemopoiesis in man. Blood 63:502–509

    PubMed  CAS  Google Scholar 

  69. Corberand JP, Laharrague P, Fillola G (1987) Blood cell parameters do not change during physiological aging. Gerontology 33: 72–76

    PubMed  CAS  Google Scholar 

  70. Resnitzky P, Segal M, Barak Y, Dassa C (1987) Granulopoiesis in aged people: inverse correlation between bone marrow cellularity and myeloid progenitor cell number. Gerontology 33:109–114

    PubMed  CAS  Google Scholar 

  71. Burgess AW, Wilson EMA, Metcalf D (1977) Stimulation by human placental conditioned medium of hemopoietic colony formation by human marrow cells. Blood 49: 573–583

    PubMed  CAS  Google Scholar 

  72. Schlunk T, Schlunk M (1980) The influence of culture conditions on the production of colony-stimulating activity by human placenta. Exp Hematol 8:179–184

    PubMed  CAS  Google Scholar 

  73. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52: 711–760

    PubMed  CAS  Google Scholar 

  74. Dusre L, Mimnaugh EG, Myers CE, Sinha BK (1989) Potentiation of doxorubicin cytotoxicity by buthionine sul-foximine in multidrug-resistant human breast tumor cells. Cancer Res 49: 511–515

    PubMed  CAS  Google Scholar 

  75. Suzukake K, Petro BJ, Vistica DT (1982) Reduction in glutathione content of L-PAM-resistant L1210 cells confers drug sensitivity. Biochem Pharmacol 31:121–124

    PubMed  CAS  Google Scholar 

  76. Green JA, Vistica DT, Young RC, Hamilton TC, Rogan AM, Ozols RF (1984) Potentiation of melphalan cytotoxicity in human ovarian cancer cell lines by glutathione depletion. Cancer Res 44: 5427–5431

    PubMed  CAS  Google Scholar 

  77. Kramer RA, Schuller HM, Smith AC, Boyd MR (1985) Effects of buthionine sulfoximine on the nephrotoxicity of 1-(2-chloroethyl)-3-(trans-4- methylcyclohexyl)-l-nitrosurea (MeCCNU). J Pharmacol Exp Ther 234: 498–506

    PubMed  CAS  Google Scholar 

  78. Russo A, Mitchell JB (1985) Potentiation and protection of doxorubicin cytotoxicity by cellular glutathione modulation. Cancer Treat Rep 69:1293–1296

    PubMed  CAS  Google Scholar 

  79. Hamilton TC, Winker MA, Louie KG, Batist G, Behrens BC, Tsuruo T, Grotzinger KR, McKoy WM, Young RC, Ozols RF (1985) Augmentation of adriamycin, melphalan and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem Pharmacol 34: 2583–2586

    PubMed  CAS  Google Scholar 

  80. Andrews PA, Schiefer MA, Murphy MP, Howell SB (1988) Enhanced potentiation of cisplatin cytotoxicity in human ovarian carcinoma cells by prolonged gutathione depletion. Chem Biol Interact 65: 51–58

    PubMed  CAS  Google Scholar 

  81. Ono K, Shrieve DC (1986) Enhancement of EMT6/SF tumor cell killing by mitomycin C and cyclophosphamide following in vivo administration of buthionine sulfoximine. Int J Radiat Oncol Biol Phys 12:1175–1178

    PubMed  CAS  Google Scholar 

  82. Crook TR, Souhami RI, Whyman GD, McLean AEM (1986) Glutathione depletion as a determinant of sensitivity of human leukemia cells to cyclophosphamide. Cancer Res 46: 5035–5038

    PubMed  CAS  Google Scholar 

  83. Tsutsui K, Komuro C, Ono K, Nishidai T, Shibamato Y, Ta-kahashi M, Abe M (1986) Chemosenzitation by buthionine sulfoximine in vivo. Int J Radiat Oncol Biol Phys 12:1183–1186

    PubMed  CAS  Google Scholar 

  84. Bump EA, Yu NY, Brown JM (1982) The use of drugs which deplete intracellular glutathione in hypoxic cell radiosensitization. Int J Radiat Oncol Biol Phys 8: 439–442

    PubMed  CAS  Google Scholar 

  85. Biaglow JE, Varnes ME, Clark EP, Epp EP (1983) The role of thiols in cellular response to radiation and drugs. Radiat Res 94: 437–455

    Google Scholar 

  86. Somfai-Relle S, Suzukake K, Vistica BP, Vistica DT (1984) Reduction in cellular glutathione by buthioninesulfox-imine and sensitization of murine tumor cells resistant to L-phenylalanine mustard. Biochem Pharmacol 33:485–490

    PubMed  CAS  Google Scholar 

  87. Anderson M (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113: 548–555

    PubMed  CAS  Google Scholar 

  88. Svardal AM, Mansoor MA, Ueland PM (1990) Determination of reduced, oxidized, and protein-bound glutathione in human plasma with precolumn derivatization with monobromobimane and liquid chromatography. Anal Biochem 184: 338–346

    PubMed  CAS  Google Scholar 

  89. Jaeschke H, Wendel A (1985) Diurnal fluctuation and pharmacological alteration of mouse organ glutathione content. Biochem Pharmacol 34:1029–1033

    PubMed  CAS  Google Scholar 

  90. Somfai-Relle S, Suzukake K, Vistica BP, Vistica DTG (1984) Glutathione conferred resistance to antineoplastics: approaches toward its reduction. Cancer Treat Rev 11: (Suppl A) 43–54

    PubMed  CAS  Google Scholar 

  91. Lee FYF, Vessey A, Rofstad E, Siemann DW, Sutherland RM (1989) Heterogeneity of glutathione content in human ovarian cancer. Cancer Res 49: 5244–5248

    PubMed  CAS  Google Scholar 

  92. Kramer RA, Zakher J, Kim G (1988) Role of glutathione redox cycle in acquired and de novo multidrug resistance. Science 241: 694–697

    PubMed  CAS  Google Scholar 

  93. Shaw JP, Chou IN (1986) Elevation of intracellular glutathione content associated with mitogenic stimulation of quiescent fibroblasts. J Cell Physiol 129:193–198

    PubMed  CAS  Google Scholar 

  94. Suda T, Dexter T (1981) Effect of hydrocortisone on long-term human bone marrow cultures. Br J Haematol 48:661–664

    PubMed  CAS  Google Scholar 

  95. Pasquale D, Chikkappa G, Wang G, Santella D (1989) Hydrocortisone promotes survival and proliferation of granulocyte macrophage progenitors via monocytes/macrophages. Exp Hematol 17:1110–1115

    PubMed  CAS  Google Scholar 

  96. Metcalf D (1986) Annotation. Haematopietic growth factors now cloned. Br J Haematol 62: 409–412

    PubMed  CAS  Google Scholar 

  97. Bronchud MH, Scarfe JH, Thatcher N et al. (1987) Phase I/II sudy of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 56: 809–813

    PubMed  CAS  Google Scholar 

  98. Antman KS, Griffin JD, Elians A et al. (1988) Effect of recombinant human granulocyte-macrophage colony stimulating factor on chemotherapy-induced myelosup-pression. N Engl J Med 319: 593–598

    PubMed  CAS  Google Scholar 

  99. Graber SE, Krantz SB (1989) Erythropoietin: biology and clinical use. Hematol Oncol Clin North Am 3: 369–400

    PubMed  CAS  Google Scholar 

  100. Demetri GD, Griffin JD (1990) Hematopoietic growth factors and high-dose chemotherapy: will grams succeed where milligrams fail? J Clin Oncol 8: 761–764

    PubMed  CAS  Google Scholar 

  101. Lord BI, Mori KJ, Wright EG, Lajtha LG (1976) An inhibitor of stem cell proliferation in normal bone marrow. Br J Haematol 34: 441–445

    PubMed  CAS  Google Scholar 

  102. Frindel E, Guigon M (1977) Inhibition of CFU-entry into cycle by a bone marrow extract. Exp Hematol 5: 74–76

    PubMed  CAS  Google Scholar 

  103. Laerum OD, Paukovits WR (1984) Inhibitory effects of a synthetic pentapeptide on hemopoietic stem cells in vitro and in vivo. Exp Hematol 12: 7–17

    PubMed  CAS  Google Scholar 

  104. Laerum OD, Paukovits WR (1989) Biological and chemical properties of the hemoregulatory peptide and possibilities for clinical applications. Pharmacol Ther 44: 335–349

    PubMed  CAS  Google Scholar 

  105. Paukovits WR, Elgjo K, Laerum OD (1990) Pentapeptide growth inhibitors. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors II. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 95)

    Google Scholar 

  106. Lord BI, Testa NG (1988) The hemopoietic system. Structure and regulation. In: Testa NG, Gale RP (eds) Hemato-poiesis. Long-term effects of chemotherapy and radiation. Dekker, New York

    Google Scholar 

  107. Lund-Johansen F, Bjerknes R, Laerum OD (1990) Flow cytometric assay for the measurement of human bone marrow phenotype, function and cell cycle. Cytometry 11:610–616

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smaaland, R., Laerum, O.D. (1992). Chronobiology of Human Bone Marrow. In: Touitou, Y., Haus, E. (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78734-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78734-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78736-2

  • Online ISBN: 978-3-642-78734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics