Skip to main content

Chronobiology of the Hypothalamic-Pituitary-Adrenal and Renin-Angiotensin-Aldosterone Systems

  • Chapter
Biologic Rhythms in Clinical and Laboratory Medicine

Abstract

Intercellular communication is an essential part of the functioning of multicellular organisms. The last 20 years have seen the recognition and characterization of many signaling molecules produced by specialized cells. It has become clear that classical hormones are inserted in multifaceted systems of information together with other substances that carry signals for activity, growth and differentiation of a wide range of cells. As discussed elsewhere in this book, cells with specific functions such as immunity and phagocytosis are capable of producing soluble signaling molecules that profoundly influence the nervous and the endocrine system. In this conceptual framework, where all attempts to rigidly classify biological systems fail as a new knowledge is acquired and where, e.g., considerable functional overlap is apparent between hormones, neurotransmitters, neuromodulators, cytokines and growth factors, one could simply state that the so-called hypothalamic-pituitary-adrenal (HPA) system, which is responsible for the release into the bloodstream of glucocorticoids, and the renin-angiotensin-aldosterone (RAA) system, which is responsible for the release into the bloodstream of the major mineralocorticoid hormone, are exceedingly complex and that some classical views on their functioning are no longer tenable. Once the relations between the.components of a given system are liable to be continuously changed by influences of other signaling substances, classical feedbacks and axes are too simplistic terms and it is more appropriate to think at each anatomical or functional station of the system as a node of a network controlled in a multifactorial fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrimonti F, Angeli A, Frairia R, Fazzari AM, Tamagnone C, Fornaro D, Ceresa F (1982) Circannual rhythmicities of Cortisol levels in the peripheral plasma of healthy adult subjects. Chronobiologia 9:107–114

    PubMed  CAS  Google Scholar 

  2. Agrimonti F, Frairia R, Fornaro D, Torta M, Borretta G, Trapani G, Bertino E, Angeli A (1982) Circadian and cir-caseptan rhythmicities in corticosteroid-binding globulin (CBG) binding capacity of human milk. Chronobiologia 9: 281–290

    PubMed  CAS  Google Scholar 

  3. Alford FP, Baker HW, Burger HB, Dekretzer DM, Hudson B, Johns MW, Masterton YP, Patel GC, Rennie GC (1973) Temporal patterns of integrated plasma hormone levels during sleep and wakefulness. I. Thyroid-stimulating hormone, growth hormone and Cortisol. J Clin Endocrinol Metab 37: 841–847

    PubMed  CAS  Google Scholar 

  4. Al-Damluji S (1988) Adrenergic mechanisms in the control of corticotrophin secretion. J Endocrinol 113: 5–14

    Google Scholar 

  5. Al-Damluji S, Cunnah D, Perry L, Grossman A, Besser G (1987) The effect of alpha adrenergic manipulation on the 24 hours pattern of Cortisol secretion in man. Clin Endocrinol (Oxf) 26: 61–66

    CAS  Google Scholar 

  6. Al-Damluji S, Cunnah D, Grossman A, Besser G (1987) Effect of adrenaline on basal and corticotropin-releasing factor stimulating ACTH secretion in man. J Endocrinol 112:145–150

    PubMed  CAS  Google Scholar 

  7. Al-Damluji S, Iveson T, Thomas JM (1987) Food induced Cortisol secretion is mediated by central α-adrenoreceptor modulation of pituitary ACTH release. Clin Endocrinol (Oxf) 26: 629–636

    CAS  Google Scholar 

  8. Allolio B, Schulte HM, Deuss U (1987) Effect of oral morphine and naloxone on pituitary-adrenal response in man induced by corticotropin-releasing hormone. Acta Endocrinol (Copenh) 114: 509–514

    CAS  Google Scholar 

  9. Ambruster H, Vetter W, Beckeroff R, Nussberger J, Vetter H, Siegenthaler W (1975) Diurnal variation of plasma aldosterone in supine man. Relationship to plasma renin activity and plasma Cortisol. Acta Endocrinol (Copenh) 80: 95–103

    Google Scholar 

  10. Amsterdam JD, Maislin G, Gold P, Winokur A (1989) The assessment of abnormalities in hormonal responsiveness at multiple levels of the hypothalamic-pituitary-adrenocorti-cal axis in depressive illness. Psychoneuroendocrinology 14: 43–62

    PubMed  CAS  Google Scholar 

  11. Andrews RW (1968) Temporal secretory response of cultured hamster adrenals. Comp Biochem Physiol 26: 179–193

    PubMed  CAS  Google Scholar 

  12. Angeli A (1982) Rhythmicity of pituitary hormone secretion. In: Motta M, Zanisi M, Piva F (eds) Pituitary hormones and related peptides. Academic, New York, pp 319–336

    Google Scholar 

  13. Angeli A (1983) Glucocorticoid secretion: a circadian synchronizer of the human temporal structure. J Steroid Biochem 19: 545–554

    PubMed  CAS  Google Scholar 

  14. Angeli A (1984) Peptide hormone analogues and novel clinical applications. Ric Clin Lab 14:123–135

    PubMed  CAS  Google Scholar 

  15. Angeli A, Carandente F (1988) An update on clinical chro-noendocrinology. Adv Biosci 73: 319–333

    Google Scholar 

  16. Angeli A, Fonzo D, Bertello P, Gaidano G, Ceresa F (1975) Circadian rhythm of urinary 17-hydroxycorticoste-roids during metyrapone-induced ACTH release in normal subjects. Chronobiologia 2:133–144

    PubMed  CAS  Google Scholar 

  17. Angeli A, Frairia R, Dogliotti L, Crosazzo C, Rigoli F, Ceresa F (1978) Differences between temporal patterns of plasma Cortisol and corticosteroid binding globulin binding capacity throughout the 24 hours day and the menstrual cycle. J Endocrinol Invest 1: 31–38

    PubMed  CAS  Google Scholar 

  18. Angeli A, Carandente F, Halberg F (1983) Temporal aspects of glucocorticoid action and clinical implications. Ric Clin Lab 13: 203–217

    PubMed  CAS  Google Scholar 

  19. Angeli A, Carandente F, Dammacco F, Halberg F, Martini L (1987) Alsactide: ACTH-agonist for use in microdoses in brain-adrenal and other feedsidewards. Chronobiologia 14:99–143

    PubMed  CAS  Google Scholar 

  20. Angelucci L, Valeri P, Grossi E (1980) Involvement of hippocampal corticosterone receptors in behavioural phenomena. In: Brambilla G, Racagni G, de Wied G (eds) Progress in psychoneuroendocrinology. Elsevier, Amsterdam, pp 186–199

    Google Scholar 

  21. Antoni FA (1986) Hypothalamic control of adrenocorticotropic secretion: advances since the discovery of 41-residue corticotropine-releasing factor. Endocr Rev 7: 351–373

    PubMed  CAS  Google Scholar 

  22. Antoni FA, Holmes MC, Jones MT (1983) Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides 4: 411–415

    PubMed  CAS  Google Scholar 

  23. Asano Y (1971) The maturation of the circadian rhythm of brain norepinephrine. Life Sci 10: 883–894

    CAS  Google Scholar 

  24. Assenmacher I. Szafarczyk A, Alonso G, Ixart G, Barbanel G (1987) Physiology of neural pathways affecting CRH secretion. Ann NY Acad Sci 512:149–161

    PubMed  CAS  Google Scholar 

  25. Ball M (1987) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia. Acta Neuropathol (Berl) 37: 111–119

    Google Scholar 

  26. Bardeleben U, Holboer F, Stalla G, Muller O (1985) Combined administration of human corticotropin-releasing factor and lysine vasopressin induces Cortisol escape from dexamethasone suppression in healthy subjects. Life Sci 37:1613–1618

    Google Scholar 

  27. Barnett JL, Winfield CG, Cronin GM, Makin AW (1981) Effect of photoperiod and feeding on plasma corticosteroid concentration and maximum corticosteroid binding capacity in the pig. Aust J Biol Sci 34: 557–585

    Google Scholar 

  28. Bartter FC, Chan JCM, Simpson HW (1979) Chronobiological aspect of plasma renin activity, plasma aldosterone and urinary electrolytes. In: Krieger DT (ed) Endocrine rhythms. Raven, New York, pp 49–132

    Google Scholar 

  29. Berczi I (1986) The influence of pituitary-adrenal axis on the immune system. In: Berczi I (ed) Pituitary function and immunity. CRC, Boca Raton, pp 49–132

    Google Scholar 

  30. Blalock JE, Smith EM, Meyer WJ (1985) The pituitary-adrenocortical axis and the immune system. Clin Endocrinol Metab 14:1021–1038

    PubMed  CAS  Google Scholar 

  31. Biglieri EG, Irony I (1990) Primary aldosteronism. In: Biglieri EG, Melby JC (eds) Endocrine hypertension. Raven, New York, pp 71–85

    Google Scholar 

  32. Biglieri EG, Shambelan M, Slaton PE (1969) Effect of adrenocorticotropin on deoxycorticosterone corticosterone and aldosterone secretion. J Clin Endocrinol Metab 29:1090–1101

    PubMed  CAS  Google Scholar 

  33. Biglieri EG, Arteaga E, Kater CE (1988) Effect of ACTH on aldosterone and other mineralocorticoid hormones. Ann NY Acad Sci 512:426–37

    Google Scholar 

  34. Born J, Kern W, Bieber K, Fehm-Wolfsdorf G, Schiebe M, Fehm HL (1986) Night-time plasma Cortisol secretion is associated with specific sleep stages. Psych 21:1415–1424

    CAS  Google Scholar 

  35. Branderberger G, Follenius M, Muzet A, Erhart J, Schieber JP (1985) Ultradian oscillations in plasma renin activity: their relationship to meals and sleep stages. J Clin Endocrinol Metab 61: 280–284

    Google Scholar 

  36. Britton KT, Koob GF (1988) Behavioral effects of corticotropin-releasing factor. In: Schatzberg A, Nemeroff CE (eds) The hypothalamic-pituitary-adrenal axis. Physiology, pathophysiology and psychiatric implications. Raven, New York, pp 55–66

    Google Scholar 

  37. Brown MH, Nunez AA (1989) Vasopressin-deficient rats show a reduced amplitude of the circadian sleep rhythms. Physiol Behav 46: 759–762

    PubMed  CAS  Google Scholar 

  38. Calogero AE, Bernardini R, Margioris AN, Bagdy G, Gal-lucci WT, Munson PJ, Tamarkin I, Tomai TP, Brady L, Gold PW, Chrolisos GP (1989) Effects of serotoninergic agonists and antagonists on corticotropin-releasing hormone secretion by explanted rat hypothalami. Peptides 10: 189–200

    PubMed  CAS  Google Scholar 

  39. Calvano SE, Reynolds RW (1984) Circadian fluctuations in plasma corticosterone, corticosterone-binding activity and total protein in male rats: possible disruption by serial blood sampling. Endocrinol Res 10:11–27

    CAS  Google Scholar 

  40. Cameron OG, Curtis GC, Zelink T, McCann D, Roth T, Guire K, Huber-Smith M (1987) Circadian fluctuation of plasma epinephrine in supine humans. Psychoneuroendocrinology 12: 41–51

    PubMed  CAS  Google Scholar 

  41. Carandente F, Angeli A, de Vecchi A, Dammacco F, Halberg F (1988) Multifrequency rhythms of immunological functions. Chronobiologia 15: 7–23

    PubMed  CAS  Google Scholar 

  42. Carandente F, Angeli A, Candiani GB, Crosignani PG, Dammacco F, de Cecco L, Marrama P, Massobrio M, Martini L (1990) Rhythms in the ovulatory cycle. 3rd Cortisol and dehydroepiandrosterone sulphate (DHEA-S). Chronobiologia 17: 209–217

    PubMed  CAS  Google Scholar 

  43. Ceresa F, Angeli A (1977) Chronotherapie corticoide. In: Mirouze J (ed) I4ième Congres International de Therapeu-tique. Rapports généraux. Expansion Scientifique Fran-caise, Paris, pp 211–223

    Google Scholar 

  44. Ceresa F, Angeli A, Boccuzzi G, Molino G (1969) Once-a-day neurally stimulated and basal ACTH secretion phased in man and their response to corticoid inhibition. J Clin Endocrinol Metab 29:1074–1082

    PubMed  CAS  Google Scholar 

  45. Chihara K, Kato Y, Maeda K, Matsukura S, Imura H (1976) Suppression by cyproheptadine of human growth hormone and Cortisol secretion during sleep. J Clin Invest 57:1393–1402

    PubMed  CAS  Google Scholar 

  46. Coleman P, Flood D (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8:521–540

    PubMed  CAS  Google Scholar 

  47. Coleman RJ, Reppert SM (1985) The cerebrospinal fluid vasopressin is effectively insulated from osmotic regulation of plasma vasopressin. Am J Physiol 248: E346-E352

    PubMed  CAS  Google Scholar 

  48. Copinschi G, Leclercq R, Goldstein J, Robin C, Delsir D, Delaet MH, Virasoro E, Vanhaelst L, L’Hermite M, van Cauter E (1977) Seasonal modifications of circadian and ultradian variations of ACTH, Cortisol, βMSH and TSH in normal man. Chronobiologia 4:106

    Google Scholar 

  49. Cornelissen G, Halberg F, Haus E, Smith D, Harrison JR (1982) Circadian acrophase lead of human circulating aldosterone and ACTH with respect to Cortisol. Chronobiologia 9: 346

    Google Scholar 

  50. Cugini P, Manconi E, Serdoz N, Mancini A, Meucci R, Scavo D (1980) Rhythm characteristics of plasma renin, aldosterone and Cortisol in five types of mesor-hypertension. J Endocrinol Invest 3:143–149

    PubMed  CAS  Google Scholar 

  51. Cugini P, Salandi E, Lisanu M, Lucia P, Tomassini R, Scavo D (1982) Age-related chronopathology in circadian and circannual rhythm of plasma renin and aldosterone in hypertensives. Eur Rev Med Pharmacol Sci 4:15–20

    Google Scholar 

  52. Cugini P, Letizia C, Scavo D (1988) The circadian rhyth-micity of serum angiotensin converting enzyme: its phasic relation with the circadian cycle of plasma renin and aldosterone. Chronobiologia 15: 229–232

    PubMed  CAS  Google Scholar 

  53. Dallman MF (1984) Viewing the ventral hypothalamus from the adrenal gland. Am J Physiol 246: R1-R3

    PubMed  CAS  Google Scholar 

  54. Dallman MF, Engeland WC, Rose JC, Wilkinson CW, Shinsako J, Siedenburg F (1978) Nycthemeral rhythm in adrenal responsiveness to ACTH. Am J Physiol 235: R210-R218

    PubMed  CAS  Google Scholar 

  55. Dallman MF, Akana SF, Cascio CS, Darlington DN, Jacob-son L, Levin N (1987) Regulation of ACTH secretion. Variation on a theme of B. Recent Prog Horm Res 43:113–167

    PubMed  CAS  Google Scholar 

  56. Dallman MF, Akana SF, Jacobson L, Levin N, Cascio CS, Shinsako J (1987) Characterization of corticosterone feedback regulation of ACTH secretion. Ann NY Acad Sci 512: 402–414

    PubMed  CAS  Google Scholar 

  57. Davis FC (1981) Ontogeny of circadian rhythms. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 257–274 (Handbook of behavioral neurobiology, vol 4)

    Google Scholar 

  58. DeBold CR, Sheldon WR, Decherney GS, Jackson RV, Alexander AN, Vale W, Rivier J, Orth DN (1984) Arginine vasopressin potentiates ACTH release induced by ovine corticotropin releasing factor. J Clin Invest 73: 533–538

    PubMed  CAS  Google Scholar 

  59. Decherney GS, de Bold CR, Jackson RV, Sheldon WR, Island DP, Orth DN (1985) Diurnal variation in the response of plasma adrenocorticotropin and Cortisol to intravenous ovine corticotropin releasing hormone. J Clin Endocrinol Metab 61: 273–279

    PubMed  CAS  Google Scholar 

  60. De Forrest JM, Davis JO, Freeman RH (1979) Circadian changes in plasma renin activity and plasma aldosterone concentration in two-kidney hypertensive rats. Hypertension 1:142–149

    Google Scholar 

  61. Desir D, van Cauter E, Fang V, Martino E, Tadot C, Spire JP, Noel P, Refetoff S, Copinschi G, Goldstein J (1981) Effect of “jet-lag” on hormonal patterns. I. Procedures, variations in total plasma proteins and disruption of adreno-corticotropin-cortisol periodicity. J Clin Endocrinol Metab 52: 628–641

    PubMed  CAS  Google Scholar 

  62. De Vecchi A, Ponticelli G (1982) A survey of current steroid regimens for transplanted patients. Heart Transplant 2: 6–70

    Google Scholar 

  63. Dolan LM, Carey RM (1989) Adrenal cortical and medullary function: diagnostic tests. In: Vaughan ED, Carey RM (eds) Adrenal disorders. Thieme, Stuttgart, pp 81–145

    Google Scholar 

  64. Drouin J, Sun YL, Nemer M (1990) Regulatory elements of the pro-opiomelanocortin gene. Pituitary specificity and glucocorticoid repression. Trends Endocrinol Metab 1: 219–225

    PubMed  CAS  Google Scholar 

  65. Dunn AJ (1990) Interleukin-1 as a stimulator of hormone secretion. PNEI 3: 26–34

    Google Scholar 

  66. Emeric-Sauval E (1986) Corticotropic-releasing factor (CRF). A review. Psychoneuroendocrinology 11: 277–294

    PubMed  CAS  Google Scholar 

  67. Eratalay YK, Simmons DJ, El-Mofty SK, Rosenberg GD, Nelson W, Haus E, Halberg F (1981) Methylprednisolone chronopharmacology: bone growth in the rat mandible following every-day or alternate day schedules. Arch Oral Biol 26:769–777

    PubMed  CAS  Google Scholar 

  68. Espiner EA (1987) The effects of stress on salt and water balance. Ballieres Clin Endocrinol Metab 1: 375–390

    CAS  Google Scholar 

  69. Evans PJ, Dieguez C, Rees LH, Hall R, Scanlon MR (1986) The effect of cholinergic blockade on the ACTH, beta-endorphin and Cortisol responses to insulin-induced hypoglycemia. Clin Endocrinol (Oxf) 24: 687–691

    CAS  Google Scholar 

  70. Fallo F, Mantero F (1990) Dexamethasone-suppressible hyperaldosteronism. In: Biglieri EG, Melby JC (eds) Endocrine hypertension. Raven, New York, pp 87–97

    Google Scholar 

  71. Feldman S, Conforti N (1980) Participation of the dorsal hyppocampus in the glucorticoid feed-back effect on adrenocortical activity. Neuroendocrinology 30:52–56

    PubMed  CAS  Google Scholar 

  72. Felong M (1976) Development of the retinohypothalamic projection in the rat. Anat Rec 184: 400–401

    Google Scholar 

  73. Ferrari E, Bossolo PA, Schianca GPC, Solerte SB, Fi-oravanti M, Nascimbene M (1982) Adrenocortical responsiveness to the synthetic ACTH 1–17 analogue given at different circadian times. Chronobiologia 9:133–141

    PubMed  CAS  Google Scholar 

  74. Ferrari E, Fraschini F, Brambilla F (1990) Hormonal circadian rhythms in eating disorders. Biol Psychiatry 27:1007–1020

    PubMed  CAS  Google Scholar 

  75. Ferrier N, Pascual J, Charlton BG, Wrigth C, Leake A, Griffiths HW, Fairbairn AF, Edwardson JA (1988) Cortisol, ACTH and dexamethasone concentrations in a psy-chogeriatric population. Biol Psychiatry 23: 252–260

    PubMed  CAS  Google Scholar 

  76. Fischette C, Komisurak B, Ediner H (1980) Differential fornix ablations and the circadian rhythmicity of adrenal corticosterone secretion. Brain Res 195: 373–382

    PubMed  CAS  Google Scholar 

  77. Fisher LA, Brown MR (1983) Corticotropin-releasing factor: central nervous system effects on the sympathetic nervous system and cardiovascular regulation. In: Ganten G, Pfaff D (eds) Central cardiovascular control, basic and clinical aspects. Springer, Berlin Heidelberg New York, pp 87–101

    Google Scholar 

  78. Follenius M, Brandenberger G, Hietter B (1982) Diurnal Cortisol peaks and their relation to meals. J Clin Endocrinol Metab 55: 757–761

    PubMed  CAS  Google Scholar 

  79. Follenius M, Simon C, Brandenberger G, Lenzi P (1987) Ultradian plasma corticotropin and Cortisol rhythms: time-series analyses. J Endocrinol Invest 10: 261–266

    PubMed  CAS  Google Scholar 

  80. Fray JCS, Park CS, Valentine AN (1987) Calcium and the control of renin secretion. Endocr Rev 8: 53–93

    PubMed  CAS  Google Scholar 

  81. Freeman RH, Davis JO, Williams GM, Seymour AA (1982) Circadian changes in plasma renin activity and plasma aldosterone concentration in one-kidney hypertensive rats. Proc Soc Exp Biol Med 169: 86–89

    PubMed  CAS  Google Scholar 

  82. Gaillard RC, Al-Damluji S (1987) Stress and the pituitary-adrenal axis. Ballieres Clin Endocrinol Metab 1: 319–354

    CAS  Google Scholar 

  83. Garfinkel PE (1984) Anorexia nervosa: an overview of hy-pothalamic-pituitary function. In: Brown GM, Koslow SH, Reichlin S (eds) Neuroendocrinology and psychiatric disorders. Raven, New York, pp 301–314

    Google Scholar 

  84. Garrick N, Hill J, Szele F, Tomai T, Gold P, Murphy D (1987) Corticotropin-releasing factor: a marked circadian rhythm in primate cerebrospinal fluid peaks in the evening and is inversely related to the Cortisol circadian rhythm. Endocrinology 121:1329–1338

    PubMed  CAS  Google Scholar 

  85. Gennazzani AR, Petraglia F, Nappi C, Martignoni E, de Leo M, Facchinetti F (1983) Endorphins in peripheral plasma: origin and influencing factors. In: Muller EE, Gennazzani AR (eds) Central and peripheral endorphins: basic and clinical aspects. Raven, New York, pp 89–97

    Google Scholar 

  86. Gibbs DM (1985) Measurement of hypothalamic corticotropin releasing factors in hypophyseal portal blood. Fed Proc 44: 203–209

    PubMed  CAS  Google Scholar 

  87. Gibbs DM (1986) Stress specific modulation of ACTH secretion by oxytocin. Neuroendocrinology 42: 456–458

    PubMed  CAS  Google Scholar 

  88. Gibbs DM, Vale W (1983) Effect of the serotonin up-take inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophyseal portal blood. Brain Res 280:176–179

    PubMed  CAS  Google Scholar 

  89. Gilad GM (1987) The stress-induced response of the septo-hyppocampal cholinergic system. A vectorial outcome of psychoneuroendocrinological interactions. Psychoneu-roendocrinology 12:167–184

    CAS  Google Scholar 

  90. Gilbert F, Dourish CT, Brazell C, McClue S, Stahl SM (1988) Relationship of increased food intake and plasma ACTH levels to 5-HT receptor activation in rats. Psycho-neuroendocrinology 13: 471–478

    CAS  Google Scholar 

  91. Gillette MU, Reppert SM (1987) The hypothalamic supra-chiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res Bull 19:135–139

    PubMed  CAS  Google Scholar 

  92. Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299: 355–357

    PubMed  CAS  Google Scholar 

  93. Gold PW, Gwirtsman H, Avgerinos PC, Nieman LK, Gal-lucci WT, Chrousos GP (1986) Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa. N Engl J Med 314:1355–1362

    Google Scholar 

  94. Goldman J, Wajchenberg BL, Liberman B, Nery M, Achando S, Gernek OA (1975) Contrast analysis for the evaluation of the circadian rhythms of plasma Cortisol, an-drostenedione and testosterone in normal men and the possible influence of meals. J Clin Endocrinol Metab 60: 164–171

    Google Scholar 

  95. Gordon RD, Wolfe LK, Island DP, Liddle GW (1966) A diurnal rhythm in plasma renin activity in man. J Clin Invest 45:1587–1592

    PubMed  CAS  Google Scholar 

  96. Graber AL, Givens J, Nicholson W, Island DP, Liddle GW (1965) Persistence of diurnal rhythmicity in plasma ACTH concentrations in Cortisol deficient patients. J Clin Endocrinol Metab 25: 804–807

    PubMed  CAS  Google Scholar 

  97. Grossman A, Clement-Jones VC, Besser GM (1985) Clinical implications of endogenous opioid peptides. In: Muller EE, MacLeod RM, Frohman LA (eds) Neuroendocrine perspectives. Elsevier, Amsterdam, pp 243–294

    Google Scholar 

  98. Haen E (1987) The peripheral lymphocyte as clinical model for receptor disturbances. Asthmatic diseases. Bull Eur Physiopathol Respir 22: 539–541

    Google Scholar 

  99. Halberg F (1969) Chronobiology. Annu Rev Physiol 31: 675–725

    CAS  Google Scholar 

  100. Halberg F (1982) Physiologic 24 hours rhythms: a determinant of response to environmental agents. In: Schaefer KE (ed) Man’s dependence on the earthly atmosphere. Mac-Millan, New York, pp 49–98

    Google Scholar 

  101. Halberg F, Visscher MB, Flink EB, Berge K, Bock F (1951) Diurnal rhythmic changes in blood eosinophil levels in health and in certain diseases. Lancet 71: 312–319

    CAS  Google Scholar 

  102. Halberg F, Reinhard J, Baratter FC (1969) Agreement in endpoints from circadian rhythmometry on healthy human beings living on different continents. Experientia 25: 107–112

    PubMed  CAS  Google Scholar 

  103. Halberg F, Sanchez de La Pena S, Cornelissen G (1985) Circadian adrenocortical cycle and the central nervous system. In: Redfen PH, Campbell LC, Davies JA, Martin KE (eds) Circadian rhythms in the central nervous system. VCH Weinheim, pp 57–79

    Google Scholar 

  104. Haus E, Lakatua DJ, Sackett-Lundeen LL, Swoyer J (1986) Chronobiology in laboratory medicine. In: Rietveld WJ (ed) Clinical aspects of chronobiology. Hoechst Medication Service, Amsterdam, pp 13–83

    Google Scholar 

  105. Hellbrugge T (1974) The development of circadian and ultradian rhythms of premature and full-term infants. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku-Shoin, Tokyo, pp 339–351

    Google Scholar 

  106. Hilfenhalis M, Hertig T (1979) Effect of inverting the light dark cycle on the circadian rhythm of urinary secretion of aldosterone, corticosterone and electrolytes in the rat. In: Reinberg A, Halberg F (eds) Chronopharmacology. Perga-mon, Oxford, pp 49–55

    Google Scholar 

  107. Hiroshige T, Sato T (1970) Postnatal development of circadian rhythm of corticotropin releasing activity in the rat hypothalamus. Endocrinol Jpn 17:1–6

    PubMed  CAS  Google Scholar 

  108. Hobson J A (1989) Sleep. Scientific American Library, New York

    Google Scholar 

  109. Home JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4: 97–110

    Google Scholar 

  110. Kaneko M, Kaneko K, Shinsako J, Dallman MF (1981) Adrenal sensitivity to adrenocorticotropin varies diurnally. Endocrinology 109: 70–75

    PubMed  CAS  Google Scholar 

  111. Kater CE, Biglieri EG, Brust N, Chang B, Hirai J, Irony I (1989) Stimulation and suppression of the mineralcorticoid hormones in normal subjects and adrenocortical disorders. Endocr Rev 10:149–164

    PubMed  CAS  Google Scholar 

  112. Katz F, Romfh P, Smith JA (1975) Diurnal variation of plasma aldosterone, Cortisol and renin activity in supine man. J Clin Endocrinol Metab 40:125–134

    PubMed  CAS  Google Scholar 

  113. Kaye WF, Gwirtsman HE, George DT, Ebert MH, Jimes-son DC, Tomai TP, Chrousos GP, Gold PW (1987) Elevated cerebrospinal fluid levels of immunoreactive corticotropin-releasing hormone in anorexia nervosa: relation to state of nutrition, adrenal function and intensity of depression. J Clin Endocrinol Metab 64:203–211

    PubMed  CAS  Google Scholar 

  114. Kerkhof GA (1985) Interindividual differences in human circadian rhythms. A review. Biol Psychol 20: 83–112

    PubMed  CAS  Google Scholar 

  115. Khachaturian H, Sladek J (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocyto-chemistry. III. Ontogeny of catecholamine varicosities and neurophysin neurons in the rat supraoptic and paraventricular nuclei. Peptides 1: 77–81

    PubMed  CAS  Google Scholar 

  116. Kiss J, Mezey E, Skirboll L (1984) Corticotropin-releasing factor immunoreactive neurons in the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci USA 81:1854–1858

    PubMed  CAS  Google Scholar 

  117. Klein R, Armitage R (1979) Rhythms in human performance: l1/2 hours oscillations in cognitive style. Science 204:1236–1237

    Google Scholar 

  118. Kleitman N (1982) Basic rest-activity cycle 22 years later. Sleep 5: 311–317

    PubMed  CAS  Google Scholar 

  119. Knapp MS, Pownall R (1980) Chronobiology, pharmacology and the immune system. Int J Immunopharmacol 2: 91–93

    Google Scholar 

  120. Krieger DT (1973) Neurotransmitter regulation of ACTH release. M Sinai J Med (NY) 40: 302–314

    CAS  Google Scholar 

  121. Krieger DT (1974) Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95:1195–1201

    PubMed  CAS  Google Scholar 

  122. Krieger DT (1974) Effect of neonatal hydrocortisone on corticosteroid circadian periodicity, responsiveness to ACTH and stress in prepuberal and adult rats. Neuroendo-crinology 16: 355–363

    CAS  Google Scholar 

  123. Krieger DT (1975) Effect of intraventricular neonatal 6-OH dopamine and 5, 6-dihydroxytryptamine administration on the circadian periodicity of plasma corticosteroid levels in the rat. Neuroendocrinology 17: 63–74

    Google Scholar 

  124. Krieger DT (1979) Rhythms in CRF, ACTH and corticosteroids. In: Krieger DT (ed) Endocrine rhythms. Raven, New York, pp 123–142

    Google Scholar 

  125. Krieger DT, Aschoff J (1979) Endocrine and other biological rhythms, vol 3. In: de Groot LJ (ed) Endocrinology. Grune and Stratton, New York, pp 2079–2109

    Google Scholar 

  126. Krieger DT, Allen W, Rizzo F (1971) Characterization of the normal pattern of plasma corticosteroid levels. J Clin Endocrinol Metab 32: 266–284

    PubMed  CAS  Google Scholar 

  127. Kripke DF (1983) Phase-advance theories for affective illness. In: Wehr TA, Goodwin FK (eds) Circadian rhythms in psychiatry. Boxwood, Pacific Grove, pp 41–69

    Google Scholar 

  128. Krishnan KRR, Ritchie JC, Manepalli AN, Venkata-ramam S, France RD, Nemeroff CB, Barroll BJ (1988) What is the relationship between plasma ACTH and plasma Cortisol in normal humans and depressed patients? In: Schatzberg AF, Nemeroff CB (eds) The hypothalamic-pituitary adrenal axis: physiology, pathophysiology and psychiatric implications. Raven, New York, pp 115–131

    Google Scholar 

  129. Kupfer DJ, Bulik CM, Jarrett DB (1983) Nighttime plasma Cortisol secretion and EEG sleep: are they associated? Psychiatry Res 10:191–199

    PubMed  CAS  Google Scholar 

  130. Iannotta F, Magnoli L, Visconti G, Rampini A, Facchinetti A, Giuliani P (1987) Differences in Cortisol, aldosterone and testosterone responses to ACTH 1–17 administered at two different times of the day. Chronobiologia 14: 39–46

    PubMed  CAS  Google Scholar 

  131. Ichikawa Y, Nishikai M, Kawagoe M, Yoshida K, Homma M (1972) Plasma corticotropin, Cortisol and growth hormone responses to hypoglycemia in the morning and evening. J Clin Endocrinol Metab 34: 859–898

    Google Scholar 

  132. Jarrett DB, Coble PA, Kupfer DJ (1983) Reduced Cortisol latency in depressive illness. Arch Gen Psychiatry 40: 506–511

    PubMed  CAS  Google Scholar 

  133. Jarrett DB, Coble P, Kupfer DJ (1985) Cortisol secretion during sleep in patients with a severe depressive illness. Psychiatr Med 3:101–110

    PubMed  CAS  Google Scholar 

  134. Joanny P, Steinberg J, Zamora A, Conte-Devolx B, Millet Y, Oliver C (1989) Corticotropin-releasing factor release from in vitro superfused and incubated rat hypothalamus. Effect of potassium, norepinephrine and dopamine. Peptides 10: 903–911

    PubMed  CAS  Google Scholar 

  135. Jones MT, Gillham B, Greenstein BD, Beckford U, Holmes MC (1982) Feedback actions of adrenal steroid hormones. In: Ganten D, Pfaff D (eds) Adrenal action on brain. Springer, Berlin Heidelberg New York, pp 45–68 (Current topics in neuroendocrinology, vol 2)

    Google Scholar 

  136. Jouvet M (1984) Mecanismes des etats du sommeil. In: Benoit O (ed) Physiologie du sommeil. Son exploration fonc-tionnelle. Masson, Paris, pp 1–18

    Google Scholar 

  137. Lakatua DJ, Nicolaug Y, Bogdan C, Petrescu E, Sackett-Lundeen LL (1984) Circadian endocrine time structure in humans above 80 years of life. J Gerontol 39: 648–654

    PubMed  CAS  Google Scholar 

  138. Lanaman JT (1953) Fetal zone of the adrenal gland. Medicine (Baltimore) 32: 389–396

    Google Scholar 

  139. Land H, Schutz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine-vasopressin-neurophysin II precursor. Nature 295: 299–303

    PubMed  CAS  Google Scholar 

  140. Lavie P, Kripke DF, Hiatt JF, Harrison J (1978) Gastric rhythms during sleep. Behav Biol 23: 526–530

    PubMed  CAS  Google Scholar 

  141. Lechan RM (1978) Neuroendocrinology of pituitary hormone regulation. Clin Endocrinol Metab 16: 475–501

    Google Scholar 

  142. Lemmer B, Lang PH (1986) Daily variation in the beta-adrenoreceptor-adenylatecyclase-cAMP-phosphodiester ase system. In: Middeke M, Hotzgreve H (eds) New aspects in hypertension: adrenoreceptors. Springer, Berlin Heidelberg New York, pp 155–165

    Google Scholar 

  143. Levi F, Canon C, Blum JP, Mechkouri M, Reinberg A, Mathe G (1985) Circadian and circahemidian rhythms in mice lymphocyte-related variables from peripheral blood of healthy subjects. J Immunol 134: 217–222

    PubMed  CAS  Google Scholar 

  144. Levin N, Shinsako J, Dallman MF (1988) Corticosterone acts on the brain to inhibit adrenalectomy-induced adreno-corticotropin secretion. Endocrinology 122: 694–700

    PubMed  CAS  Google Scholar 

  145. Levin R, Fitzpatrick KM, Levine S (1976) Maternal influences on the ontongeny of basal levels of plasma corticosterone in the rat. Horm Behav 7: 41–48

    PubMed  CAS  Google Scholar 

  146. Levy D (1987) Circadian rhythms and personality characteristics: an empirical investigation. Rass Psicol 4: 47–56

    Google Scholar 

  147. Lewy A J (1983) Effects of light on melatonin secretion and the circadian system of man. In: Wehr TA, Goodwin FK (eds) Circadian rhythms in psychiatry. Boxwood, Pacific Grove, pp 203–233

    Google Scholar 

  148. Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC (1985) Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab 60:1210–1215

    PubMed  CAS  Google Scholar 

  149. Linton EA, Gillies GE, Lowry PJ (1983) Ovine corticotropin-releasing factor and vasopressin: antibody quenching studies on hypothalamic extracts of normal and Brat-tleboro rats. Endocrinology 113:1878–1883

    PubMed  CAS  Google Scholar 

  150. MacLeod RM, Spangelo BL (1990) Newly identified relationships among immunopeptides and neuroendocrine hormones (Abstr). 1st International Congress of the International Society for Neuroimmunomodulation (ISNIM), May 23–26, Florence

    Google Scholar 

  151. Mallo C, Zaidan R, Faure A, Brun J, Chazot G, Claustrat B (1988) Effects of a four-day nocturnal melatonin treatment on the 24 h plasma melatonin, Cortisol and prolactin profiles in humans. Acta Endocrinol (Copenh) 119: 474–480

    CAS  Google Scholar 

  152. Mandell MP, Mandell AJ, Rubin RT, Brill P, Rodnick J, Sheff R, Chaffey B (1966) Activation of the pituitary adrenal axis during rapid eye movement sleep in man. Life Sci 5: 583–587

    PubMed  CAS  Google Scholar 

  153. Meier AM (1976) Daily variation in concentration of plasma corticosteroids in hypophysectomized rats. Endocrinology 93:1475–1479

    Google Scholar 

  154. Millington WR, Blum M, Knight R, Mueller GP, Roberts JL, O’Donohue TL (1986) A diurnal rhythm in proopiomelanocortin messenger ribonucleic acid that varies concomitantly with the content and the secretion of β-endorphin in the intermediate lobe of the rat pituitary. Endocrinology 116: 829–834

    Google Scholar 

  155. Minors DS, Waterhouse JM (1981) The endocrine system. In: Circadian rhythms and the human. Wright, London, pp 140–165

    Google Scholar 

  156. Minors DS, Waterhouse JM (1981) The kidney and hormones affecting it. In: Circadian rhythms in the human. Wright, London, pp 68–94

    Google Scholar 

  157. Minors DS, Waterhouse JM (1988) Mathematical and statistical analysis of circadian rhythms. Psychoneuroendocri-nology 13:443–64

    CAS  Google Scholar 

  158. Moberg G, Scapagnini U, de Groot J (1971) Effect of sectoring the fornix on diurnal fluctuation in plasma corticosterone levels in the rat. Neuroendocrinology 7:11–18

    PubMed  CAS  Google Scholar 

  159. Modunger RS, Sharif-Zadek K, Ertel NH, Gutkin M (1976) The circadian rhythm of renin. J Clin Endocrinol Metab 43:1276–1282

    Google Scholar 

  160. Moeller H (1985) Chronopharmacology of hydrocortisone and 9α-fluorohydrocortisone in the treatment for congenital adrenal hyperplasia. Eur J Pediatr 144: 370–373

    PubMed  CAS  Google Scholar 

  161. Moore RJ (1980) Suprachiasmatic nucleus, secondary syn-chronicity stimuli and the central neural control of circadian rhythms. Brain Res 183:13–28

    PubMed  CAS  Google Scholar 

  162. Moore-Ede MC (1983) The circadian timing system in mammals: two pacemakers preside over many secondary oscillators. Fed Proc 42: 2802–2808

    PubMed  CAS  Google Scholar 

  163. Morgano A, Puppo F, Criscuolo D, Lotti G, Indiveri F (1987) Evening administration of alpha-interferon-rela-tionship with the circadian rhythm of Cortisol. Med Sci Res 15: 615–616

    CAS  Google Scholar 

  164. Morley JE (1987) Neuropeptide regulation of appetite and weight. Endocr Rev 8: 256–287

    PubMed  CAS  Google Scholar 

  165. Morris CS, Hitchcock E (1985) Immunocytochemistry of folliculo-stellate cells of normal and neoplastic pituitary gland. J Clin Pathol 38: 481–488

    PubMed  CAS  Google Scholar 

  166. Mullen PE, James VHT, Lightman SL, Linsell C, Peart WS (1980) A relationship between plasma renin activity and the rapid eye movement phase of sleep in man. J Clin Endocrinol Metab 50: 466–469

    PubMed  CAS  Google Scholar 

  167. Munck A, Gutre PM, Molbrook NI (1984) Physiological functions of glucocorticoids in stress and their relationship to pharmacological actions. Endocr Rev 5: 25–14

    PubMed  CAS  Google Scholar 

  168. Nelson W, Tong YL, Lee J-K, Halberg F (1979) Methods for cosinor-rhythmometric. Chronobiologia 6: 305–323

    PubMed  CAS  Google Scholar 

  169. Nemeroff C, Widerlov E, Bisette G, Walleus H, Karlsson I, Eklund K, Kilts C, Loosen P, Vale W (1984) Elevated concentrations of CSF corticotropin releasing faktor-like im-munoreactivity in depressed patients. Science 226: 1342–1345

    PubMed  CAS  Google Scholar 

  170. Nichols T, Nugent CA, Tyler GH (1965) Diurnal variation in suppression of adrenal function by glucocorticoids. J Clin Endocrinol Metab 25: 343–349

    PubMed  CAS  Google Scholar 

  171. Nicolau GY, Haus E (1989) Chronobiology of the endocrine system. Rev Roum Med Endocrinol 27:153–183

    CAS  Google Scholar 

  172. Nicolau GY, Haus E, Lakatua D, Popa M, Marinescu I, Ionescu B, Bogdan C, Popescu M, Sackett-Lundeen L, Robu E, Petrescu E (1986) Circadian rhythm of beta-en-dorphin in the plasma of clinically healthy subjects and in patients with adrenocortical disorders. Rev Roum Med Endocrinol 24:185–195

    CAS  Google Scholar 

  173. Noto T, Hashimoto H, Doi Y, Nawajima T, Kato N (1983) Biorhythms of arginine-vasopressin in the paraventricular supraoptic and suprachiasmatic nuclei of rats. Peptides 4: 875–878

    PubMed  CAS  Google Scholar 

  174. Oliver C, Vague P, Vague J (1971) L’ACTH plasmatique dans les etats d’hypocorticisme. Ann Endocrinol (Paris) 32: 868–883

    CAS  Google Scholar 

  175. Ottenweller JE, Meier AH, Ferrell BR, Horseman MD, Procton A (1978) Extrapituitary regulation of the circadian rhythm of plasma corticosteroid concentrations in rats. Endocrinology 103:1875–1879

    PubMed  CAS  Google Scholar 

  176. Ottenweller JE, Miller AH, Russo AC, Frenzke ME (1979) Circadian rhythms of plasma corticosterone binding activity in the rat and the mouse. Acta Endocrinol (Copenh) 91: 150–157

    CAS  Google Scholar 

  177. Palkovits M (1987) Anatomy of neural pathways affecting CRH secretion. Ann NY Acad Sci 512:139–148

    PubMed  CAS  Google Scholar 

  178. Parnetti L, Mecocci P, Neri C, Palazzetti D, Fiacconi M, Santucci A, Santucci C, Ballatori E, Reboldi GP, Caputo N, Signorini E, Senin U (1990) Neuroendocrine markers in aging brain: clinical and neurobiological significance of dexamethasone suppression test. Aging 2:173–179

    PubMed  CAS  Google Scholar 

  179. Payne DW, Peng LH, Dearlman WH, Talbert LM (1976) Corticosteroid-binding proteins in human colostrum and milk, and rat milk. J Biol Chem 251: 5272–5276

    PubMed  CAS  Google Scholar 

  180. Perlow MJ, Reppert SM, Hartman HA, Fischer DA, Self SM, Robinson AG (1982) Oxytocin, vasopressin and estrogen-stimulated neurophysin: daily patterns of concentration in cerebrospinal fluid. Science 216:1416–1418

    PubMed  CAS  Google Scholar 

  181. Petraglia F, Facchinetti F, d’Ambrogio G, Volpe A, Genaz-zani AR (1986) Somatostatin and oxytocin infusion inhibits the rise of plasma β-endorphin, lipotrophin and Cortisol induced by insulin hyperglycemia. Clin Endocrinol (Oxf) 24: 609–616

    CAS  Google Scholar 

  182. Pincus G (1943) A diurnal rhythm in the secretion of urinary 17-ketosteroids in young men. J Clin Endocrinol 3: 195–199

    CAS  Google Scholar 

  183. Piovesan A, Terzolo M, Borretta G, Torta M, Bunvia T, Osella G, Paccotti P, Angeli A (1990) Circadian profile of serum melatonin in Cushing’s disease and acromegaly. Chronobiol Int 7: 259–261

    PubMed  CAS  Google Scholar 

  184. Plotsky PM (1987) Regulation of hypophysiotropic factors mediating ACTH secretion. Ann NY Acad Sci 512: 205–217

    PubMed  CAS  Google Scholar 

  185. Plotsky PM, Cunningham ET, Widmaier R (1989) Cate-cholaminergic modulation of corticotropin-releasing factor and adrenocortical secretion. Endocr Rev 10: 437–458

    PubMed  CAS  Google Scholar 

  186. Preslock JP (1984) The pineal gland: basic implications and clinical correlations. Endocr Rev 5: 282–308

    PubMed  CAS  Google Scholar 

  187. Quigley ME, Yen SSC (1979) A mid-day surge in Cortisol levels. J Clin Endocrinol Metab 49: 945–947

    PubMed  CAS  Google Scholar 

  188. Quinns SJ, Williams GH (1988) Regulation of aldosterone secretion. Annu Rev Physiol 50: 409–426

    Google Scholar 

  189. Raskind M, Peskind E, Rivard MF, Veith R, Barnes R (1982) Dexamethasone suppression test and Cortisol circadian rhythm in primary degenerative dementia. Am J Psychiatry 139:1468–1471

    PubMed  CAS  Google Scholar 

  190. Rasmussen DD (1986) Physiological interaction of the basic rest-activity in the brain: pulsatile luteinizing hormone secretion as a model. Psychoneuroendocrinology 11: 389–405

    PubMed  CAS  Google Scholar 

  191. Ratge P, Kroll E, Diever U, Hadjimas A, Wisser H (1982) Circadian rhythm of catecholamines, Cortisol and prolactin is altered in patients with apallic syndrome in comparison with normal volunteers. Acta Endocrinol (Copenh) 101: 428–435

    CAS  Google Scholar 

  192. Reinberg A, Lagoguey M (1978) Annual endocrine rhythms in healthy young adult men: their implications in human biology and medicine. In: Assenmacher I, Farner DS (eds) Environmental endocrinology. Springer, Berlin Heidelberg New York, pp 113–121

    Google Scholar 

  193. Reinberg A, Halberg F, Falliers G (1974) Circadian timing of methylprednisolone effects in asthmatic boys. Chrono-biologia 1: 333–347

    CAS  Google Scholar 

  194. Reinberg A, Guillemant S, Ghata NJ, Guillemant J, Toui-tou Y, Dupont W, Lagoguey M, Bourgeois P, Briere L, Fra-boulet G, Guilett P (1980) Clinical chronopharmacology of ACTH 1–17. I. Effects on plasma Cortisol and urinary 17-hydroxycorticosteroids. Chronobiologia 7: 513–523

    PubMed  CAS  Google Scholar 

  195. Reinberg A, Gervais P, Chaussade M, Fraboulet G, Dubur-que B (1983) Circadian changes in effectiveness of corticosteroids in light patients with allergic asthma. J Allergy Clin Immunol 71:425–33

    PubMed  CAS  Google Scholar 

  196. Reinhardt D, Becker B, Nagel-Hemke M, Schiffer R, Zehmisch T (1983) Influence of beta-receptor-agonists and glucocorticoids on alpha-and-beta-adrenoreceptors of isolated blood cells from asthmatic children. Pediatr Pharmacol 3: 293–302

    CAS  Google Scholar 

  197. Reiter RJ (1982) Neuroendocrine effects of the pineal gland and of melatonin. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 7. Raven, New York

    Google Scholar 

  198. Reppert SM, Schwartz WJ, Uhl GR (1987) Arginine vasopressin: a novel peptide rhythm in cerebrospinal fluid. Trends Neurosci 10: 76–80

    CAS  Google Scholar 

  199. Reppert SM, Weaver DR, Rivlees SA (1988) Maternal communications of circadian phase to the developing mammal. Psychoneuroendocrinology 13: 63–78

    PubMed  CAS  Google Scholar 

  200. Richards AM, Tonolo G, Fraser R, Morton JJ, Leckie BJ, Ball SG, Robertson JIS (1987) Diurnal change in plasma atrial natriuretic peptide concentrations. Clin Sci 73: 489–495

    PubMed  CAS  Google Scholar 

  201. Roth KA, Weber E, Barchas GD (1982) Immunoreactive corticotropin-releasing factor (CRF) and vasopressin are colocalized in a subpopulation of the immunoreactive vasopressin cells in the paraventricular nucleus of the hypothalamus. Life Sci 31:1875–1860

    Google Scholar 

  202. Roy A, Pickar D, Paul S, Doran A, Chrousos G, Gold PW (1987) CSF corticotropin-releasing hormone in depressed patients and normal control subjects. Am J Psychiatry 144: 641–645

    PubMed  CAS  Google Scholar 

  203. Rubin RT, Poland RE, Gouin PR, Tower BB (1978) Secretion of hormones influencing water and prolactin during sleep in normal adult men. Psychosom Med 40:44–59

    PubMed  CAS  Google Scholar 

  204. Rusak B, Boulos Z (1981) Pathways for photic entrain-ment of mammalian circadian rhythms. Photochemistry 34: 267–273

    CAS  Google Scholar 

  205. Schanbelan M, Brust NL, Chung BCF, Slater KL, Biglieri EG (1976) Circadian rhythm and the effect of posture on plasma aldosterone concentration in primary aldosteronism. J Clin Endocrinol Metab 43:115–131

    Google Scholar 

  206. Sachar EJ, Hellman L, Roffwarg H, Halpern E, Fukushima D, Gallagher T (1973) Disrupted 24-hour patterns of Cortisol secretion in psychotic depression. Arch Gen Psychiatry 28:19–24

    PubMed  CAS  Google Scholar 

  207. Sakurai H, Naruse M, Naruse K, Obana K, Higashida T, Kurimoto F, Demura H, Inagani T, Schizume K (1987) Postural suppression of plasma atrial natriuretic polypeptide concentrations in man. Clin Endocrinol (Oxf) 26: 173–178

    CAS  Google Scholar 

  208. Salas MA, Evans SW, Levell MJ, Whicher JT (1990) Inter-leukin-6 and ACTH act synergistically to stimulate the release of corticosterone from adrenal gland cells. Clin Exp Immunol 79:470–73

    PubMed  CAS  Google Scholar 

  209. Sapolsky RM, Plotsky PM (1990) Hypercortisolism and its possible neural bases. Biol Psychiatry 27: 937–952

    PubMed  CAS  Google Scholar 

  210. Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7:284–301

    PubMed  CAS  Google Scholar 

  211. Sapolsky RM, Armanini M, Packan D, Tombaugh G (1987) Stress and glucocorticoids in aging. Clin Endocrinol Metab 16: 965–994

    CAS  Google Scholar 

  212. Sawchenko PE, Swanson LW, Vale WW (1984) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons. Proc Natl Acad Sci USA: 81:1883–1887

    PubMed  CAS  Google Scholar 

  213. Scapagnini U, Moberg GP, van Loon GR, DeGroot J, Ga-nong WF (1971) Relations of brain 5-hydroxytryptamine content to the diurnal variations in plasma corticosterone in the rat. Neuroendocrinology 7: 90–96

    PubMed  CAS  Google Scholar 

  214. Schams D, Karg H (1986) Hormones in milk. Ann NY Acad Sci 464:75–86

    PubMed  CAS  Google Scholar 

  215. Schlechte JA, Ginsberg BH, Sherman BM (1982) Regulation of the glucocorticoid receptor in human lymphocytes. J Steroid Biochem 16: 69–74

    PubMed  CAS  Google Scholar 

  216. Schwartz WJ, Repperts M (1985) Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a prominent role for the suprachiasmatic nuclei. J Neurosci 5: 2771–2778

    PubMed  CAS  Google Scholar 

  217. Schwartz WJ, Coleman RJ, Reppert SM (1983) A daily vasopressin rhythm in rat cerebrospinal fluid. Brain Res 263: 105–112

    PubMed  CAS  Google Scholar 

  218. Serio M, Piolanti P, Romano S, de Magistris L, Giusti G (1970) The circadian rhythm of plasma Cortisol in subjects over 70 years of age. J Gerontol 25: 95–97

    PubMed  CAS  Google Scholar 

  219. Shibata S, Liou SY, Ueki S, Oomura Y (1984) Influence of environmental light-dark cycle and enucleation on activity of suprachiasmatic neurons in slice preparations. Brain Res 302: 75–81

    PubMed  CAS  Google Scholar 

  220. Signore A, Cugini P, Letizia C, Lucia P, Murano G, Pozzilli P (1985) Study of the diurnal variation of human lymphocyte subsets. J Clin Lab Immunol 17: 25–28

    PubMed  CAS  Google Scholar 

  221. Smolensky MH, Halberg F, Pitts G, Nelson W (1981) The chronopharmacology of methylprednisolone: clinical implications of animal studies with special emphasis on the moderation of growth inhibition by timing to circadian rhythms. In: Smolensky MH, Reinberg A, MacGovern JP (eds) Recent advances in the chronobiology of allergy and immunology. Pergamon, Oxford, pp 137–171

    Google Scholar 

  222. Sofroniew MA, Weindl A (1980) Identification of paracel-lular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. J Comp Neurol 193: 659–665

    PubMed  CAS  Google Scholar 

  223. Sorensen PS, Hammer M (1985) Vasopressin in plasma and ventricular cerebral spinal fluid during dehydration, postural changes and nausea. Am J Physiol 248: R78-R83

    PubMed  CAS  Google Scholar 

  224. Soutar CA, Costello J, Ijaduoca O, Turner-Warwick M (1975) Nocturnal and early morning asthma. Relationship to plasma corticosteroid and response to cortical infusion. Thorax 30: 436–444

    PubMed  CAS  Google Scholar 

  225. Sperling A (1980) Newborn adaptation: adrenocortical hormones and ACTH. In: Tulchinsky D, Ryan KJ (eds) Maternal-fetal endocrinology. Sanders, Philadelphia, pp 387–408

    Google Scholar 

  226. Spinedi E, Negro-Vilar A (1983) Serotonin and adrenocor-ticotrophin (ACTH) release: direct effects at the anterior pituitary level and potentiation of arginin-vasopressin induced ACTH release. Endocrinology 112:1217–1223

    PubMed  CAS  Google Scholar 

  227. Steiger A, Herth T, Holsboer F (1987) Sleep-electroence-phalography and the secretion of Cortisol and growth hormone in normal controls. Acta Endocrinol (Copenh) 116: 36–42

    CAS  Google Scholar 

  228. Stene M, Panagiotis N, Tuck ML, Sowers JR, Mayers D, Berg G (1980) Plasma norepinephrine levels are influenced by sodium intake, glucocorticoid administration and circadian changes in normal man. J Clin Endocrinol Metab 51:1340–1345

    PubMed  CAS  Google Scholar 

  229. Stephan FK, Berkely KJ, Moss KL (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6: 2625–2641

    PubMed  CAS  Google Scholar 

  230. Sterman MB (1972) The basic rest-activity cycle and sleep: developmental consideration in man and cats. In: Clemente CD, Purpura DP, Mayer FE (eds) Sleep and the nervous system. Academic, New York, pp 175–197

    Google Scholar 

  231. Stock G (1982) Neurobiology of REM sleep. A possible role for dopamine. In: Ganten D, Pfaff D (eds) Sleep. Clinical and experimental aspects. Springer, Berlin Heidelberg New York, pp 1–36

    Google Scholar 

  232. Stockigt JR (1976) Mineralcorticoid hormones. Adv Steroid Biochem Pharmacol 3:161–238

    Google Scholar 

  233. Strassman RJ, Appenzeller O, Lewy AJ, Quails CR, Peake GT (1989) Increase in plasma melatonin, β-endorphin and Cortisol after a 28.5-mile mountain race: relationship to performance and lack of effect of naltrexone. J Clin Endocrinol Metab 69: 540–545

    PubMed  CAS  Google Scholar 

  234. Swanson LW, Cowan WM (1975) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160:1–12

    PubMed  CAS  Google Scholar 

  235. Swanson LW, Sawchenko P, Berod A, Harman B, Helle K, Vandoren D (1981) An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J Comp Neurol 196: 271–276

    PubMed  CAS  Google Scholar 

  236. Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assen-macher I (1987) Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology 121: 883–892

    PubMed  CAS  Google Scholar 

  237. Takahashi K, Inoui K, Takahashi Y (1977) Parallel shift in circadian rhythms of adrenocortical activity and food intake in blinded and intact rats exposed to continuous illumination. Endocrinology 100:1097–1107

    PubMed  CAS  Google Scholar 

  238. Tabeke K, Setaishi C, Hirama M, Yamamoto M, Horiuchi Y (1966) Effects of a bacterial pyrogen on the pituitary-adrenal axis at various times in 24 hours. J Clin Endocrinol Metab 26: 437–442

    Google Scholar 

  239. Terzolo M, Piovesan A, Osella G, Puligheddu B, Torta M, Paccotti P, Angeli A (1990) Morning to evening changes of human pituitary and adrenal responses to specific stimuli. J Endocrinol Invest 13:181–185

    PubMed  CAS  Google Scholar 

  240. Terzolo M, Piovesan A, Panarelli M, Torta M, Osella G, Paccotti P, Angeli A (1990) Effects of long-term, low-dose, time-specified melatonin administration on endocrine and cardiovascular variables in adult men. J Pineal Res 9:113–124

    PubMed  CAS  Google Scholar 

  241. Touitou Y (1982) Some aspects of the circadian time structure in the elderly. Gerontology 28: 53–67

    PubMed  CAS  Google Scholar 

  242. Touitou Y, Motohashi Y, Patti A, Levi F, Reinberg A, Ferment O (1986) Comparison of Cortisol circadian rhythms documented in samples of saliva, capillary (finger tips) and venous blood from healthy subjects. Annu Rev Chrono-pharmacol 3: 297–299

    CAS  Google Scholar 

  243. Tribollet E, Barberis C, Jard S, Dubois-Dauphin M, Drei-fuss JJ (1988) Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopy autoradiography. Brain Res 442:105–118

    PubMed  CAS  Google Scholar 

  244. Tuomisto J, Mannisto P (1985) Neurotransmitter regulation of pituitary hormones. Pharmacol Rev 37: 249–332

    PubMed  CAS  Google Scholar 

  245. Turek FW (1985) Circadian neural rhythms in mammals. Ann Rev Physiol 47: 49–64

    CAS  Google Scholar 

  246. Turek FW, van Cauter E (1988) Rhythms in reproduction. In: Knobil E, Neilly J (eds) The physiology of reproduction. Raven, New York, pp 1789–1830

    Google Scholar 

  247. Ungar F, Halberg F (1962) Circadian rhythm of the in vitro response of mouse adrenal to adrenocorticotropic hormone. Science 137:1058–1060

    PubMed  CAS  Google Scholar 

  248. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin an β-endorphin. Science 213: 1394–1397

    PubMed  CAS  Google Scholar 

  249. Van Cauter E (1984) Rythmes hormonaux et sommeil. In: Benoit O (ed) Physiologie du sommeil. Son exploration fonctionnelle. Masson, Paris, pp 85–98

    Google Scholar 

  250. Vandesande F, Diericks K, Demey J (1977) The origin of the vasopressinergic and oxytoninergic fibers of the external region of the median eminence of the rat hypophysis. Cell Tissue Res 180:443–452

    PubMed  CAS  Google Scholar 

  251. Veglio F, Pietrandrea R, Ossola M, Vignani A, Angeli A (1987) Circadian rhythm of the angiotensin converting enzyme (ACE) activity in serum of healthy adult subjects. Chronobiologia 14: 21–25

    PubMed  CAS  Google Scholar 

  252. Veglio F, Padoan M, Gambino M, Paccotti P, Terzolo M, Angeli A (1988) Plasma steroid responses to circadian-stage-specified injection of different doses of the ACTH analogue alsactide (ACTH 1–17) in healthy adult man. Ric Clin Lab 18: 95–104

    PubMed  CAS  Google Scholar 

  253. Waldhauser F, Frisk H, Kratgasser-Gasparotti A, Schober E, Wieglmaier C (1986) Serum melatonin is not affected by glucocorticoid replacement in congenital adrenal hyperplasia. Acta Endocrinol (Copenh) 111: 355–361

    CAS  Google Scholar 

  254. Walsh BT, Roose SP, Katw JL, Dyrenfurth I, Wright L, Vandewiele R, Glassman AH (1987) Hypothalamic-pitu-itary-adrenal-cortical activity in anorexia nervosa and bulimia. Psychoneuroendocrinology 12:131–140

    PubMed  CAS  Google Scholar 

  255. Webb W (1974) The rhythms of sleep and waking. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku-Shoin, Tokyo, pp 482–486

    Google Scholar 

  256. Weitzman ED (1976) Circadian rhythms and episodic hormone secretion in man. Annu Rev Med 27: 225–243

    PubMed  CAS  Google Scholar 

  257. Weitzman ED, Fukushima D, Nogeire C (1971) Twenty-four hour pattern of episodic secretion of Cortisol in normal subjects. J Clin Endocrinol Metab 33:14–22

    PubMed  CAS  Google Scholar 

  258. Weitzman ED, Nogeire C, Perlow M (1974) Effects of a prolonged 3-hours sleep-wake cycle on sleep stages, plasma Cortisol, growth hormone and body temperature in man. J Clin Endocrinol Metab 38:1018–1030

    PubMed  CAS  Google Scholar 

  259. Wetterberg L (1978) Melatonin in humans: physiological and clinical studies. J Neural Transm [Suppl] 13: 289–310

    CAS  Google Scholar 

  260. Wetterberg L, Beck-Frus J, Kjellman BF, Ljunggren JG (1984) Circadian secretion in depression. In: Usdin E (ed) Frontiers in biochemical and pharmacological research in depressives. Raven, New York, pp 197–207

    Google Scholar 

  261. Williams GH, Cain JP, Dluhy RG, Underwood RH (1972) Studies on the control of plasma aldosterone concentrations in normal man. I. Response to posture, acute and chronic volume depletion and sodium loading. J Clin Invest 51:1950–1957

    PubMed  Google Scholar 

  262. Winters CJ, Sallman AL, Vesely DL (1988) Circadian rhythm of prohormone atrial natriuretic peptides 1–30,31–67 and 99–126 in man. Chronobiol Int 5: 403–409

    PubMed  CAS  Google Scholar 

  263. Wolf son B, Manning R, Davis L, Arentzen R, Baldino F (1985) Co-localization of corticotropin-releasing factor and vasopressin in RNA in neurones after adrenalectomy. Nature 315: 59–61

    CAS  Google Scholar 

  264. Yamazaki J, Takahashi K (1983) Effect of change of mothers and lighting conditions on the development of the circadian adrenocortical rhythm in blinded rat pups. Psychoneuroendocrinology 8: 237–244

    PubMed  CAS  Google Scholar 

  265. Young WF, Klee GC (1988) Primary aldosteronism. Diagnostic evaluation. Clin Endocrinol Metab 17: 367–395

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angeli, A., Gatti, G., Masera, R. (1992). Chronobiology of the Hypothalamic-Pituitary-Adrenal and Renin-Angiotensin-Aldosterone Systems. In: Touitou, Y., Haus, E. (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78734-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78734-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78736-2

  • Online ISBN: 978-3-642-78734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics