Skip to main content

Neurotransmitter im enterischen Nervensystem

  • Conference paper
Ökosystem Darm V
  • 67 Accesses

Zusammenfassung

Das autonome Nervensystem teilt sich nach dem Konzept von Langley (1921) auf in 3 Subsysteme: Das enterische Nervensystem, das sympathische und das pa-rasympatische Nervensystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agoston DV, Ballmann M, Conlon JM et al. (1985) Isolation of neuropeptide containing vesicles from the guinea-pig ileum. J Neurochem 45: 398–406

    Article  PubMed  CAS  Google Scholar 

  2. Agoston DV, Conlon JM, Whittacker VP (1988) Selective depletion of acetylcholine and vasoactive intestinal polypeptide of the guinea pig myenteric plexus by differential mobilization of distinct transmitter pools. Exp Brain Res 72: 535–542

    Article  PubMed  CAS  Google Scholar 

  3. Allescher HD, Ahmad S, Kostka P et al. (1989) Distribution of opioid receptors in canine small intestine: implications for function. Am J Physiol 256: G966–G974

    PubMed  CAS  Google Scholar 

  4. Allescher HD, Tougas G, Vergara et al. (1992) Nitric Oxide as a putative non-adrenergic non-cholinergic inhibitory transmitter in the canine pylorus in vivo. Am J Physiol 262: G695–G702

    PubMed  CAS  Google Scholar 

  5. Bitar KN, Makhlouf GM (1982) Receptors on smooth muscle cells. Characterization by contraction and specific antagonists. Am J Physiol 242: G400–G407

    PubMed  CAS  Google Scholar 

  6. Boeckxstaens GE, Pelckmans PA, Bult H et al. (1990) Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction. European J Pharmacol 190: 239–246

    Article  CAS  Google Scholar 

  7. Boeckxstaens GE, Pelckmans PA, Bult H et al. (1991) Evidence for nitric oxide as mediator of non-adrenergic, non-cholinergic relaxations induced by ATP and GABA in the canine gut. Br J Pharmacol 102: 434–438

    PubMed  CAS  Google Scholar 

  8. Boeckxstaens GE, Pelckmans PA, Ruytjens IF et al. (1991) Bioassay of nitric oxide released upon stimulation of non-adrenergic non-cholinergic nerves in the canine ileocolonic junction. Br J Pharmacol 103: 1085–1091

    PubMed  CAS  Google Scholar 

  9. Boeckxstaens GE, Pelckmans PA, Herman AG, Van Maercke YM (1993) Involvement of nitric oxide in the inhibitory innervation of the human isolated colon. Gastroenterology 104: 690–697

    PubMed  CAS  Google Scholar 

  10. Bornstein JC, Costa M, Furness JB, Lees GM (1984) Electrophysiology and enkephalin immunoreactivity of identified myenteric plexus neurons of guinea pig small intestine. J Physiol 351: 313

    PubMed  CAS  Google Scholar 

  11. Bult H, Boeckxstaens GE, Pelckmans PA et al. (1990) Nitric oxide as an inhibitory non-ad- renergic non-cholinergic neurotransmitter. Nature 345: 346–347

    Article  PubMed  CAS  Google Scholar 

  12. Cheng JT, Shen CL (1986) Tyramine induced release of neuropeptide Y in isolated rabbit intestine. European J Pharmacol 123: 303

    Article  CAS  Google Scholar 

  13. Costa M, Furness JB, Llewellyn-Smith (1987) Histochemistry of the enteric nervous system; in Johnson LR (ed): Physiology of the gastrointestinal tract. Raven Press, New York, pp 1–40

    Google Scholar 

  14. Daniel EE, Costa M, Furness JB, Keast JR (1985) Peptide neurons in canine small intestine. J Comp Neurol 237: 227–238

    Article  PubMed  CAS  Google Scholar 

  15. Daniel EE, Furness JB, Costa M, Belbeck L (1987) The projections of chemically identified nerve fibres in canine ileum. Cell Tis Res 247: 377

    CAS  Google Scholar 

  16. Daniel EE, Collins SM, Fox JET, Huizinga J (1989) Pharmacology of neuroendocrine peptides. In: Schultz SG (ed) Handbook of Physiology. Section VI: Part I Motility and Circulation. Am. Physiological Society, Maryland, pp 759–816

    Google Scholar 

  17. Deacon CF, Agoston DV, Nau R, Conlon JM (1987) Conversation of neuropeptide K to neurokinin A and vesicular colocalization of neurokinin A and substance P in neurons of the guinea pig small intestine. J Neurochem 48: 141–146

    Article  PubMed  CAS  Google Scholar 

  18. De Man JG, Pelckmans PA, Boeckxstaens GE et al. (1991) The role of nitric oxide in inhibitory non-adrenergic non-cholinergic neurotransmission in the canine lower oesophageal sphincter. Br J Pharmacol 103: 1092–1096

    PubMed  Google Scholar 

  19. Dogiel AS (1899) Über den Bau der Ganglien in den Rechten des Darms und der Gallenblase des Menschen und der Säugetiere. Arch Anat Physiol Anat 130–158

    Google Scholar 

  20. Donnerer J, Holzer P, Lembeck F (1984) Release of dynorphin, somatostatin and substance P from the vascularly perfused small intestine of the guinea-pig during peristalsis. Br J Pharmacol 83: 919–925

    PubMed  CAS  Google Scholar 

  21. Donnerer J, Meyer DK, Holzer P, Lembeck F (1985) Release of cholecystokinin-immuno- reactivity into the vascular bed of the guinea pig small intestine during peristalsis. Naunyn Schmiedberg’s Arch Pharmacol 328: 324–328

    Article  CAS  Google Scholar 

  22. Du C, Murray J, Conklin JL (1991) Nanc nerve mediated inhibitory junction potentials in the circular smooth muscle of oppossum lower esophageal sphincter. Gastroenterology 100 (Abstract): A438

    Google Scholar 

  23. Duval JW, Saffouri B, Weir GC et al. (1981) Stimulation of gastrin and somatostatin secretion from isolated rat stomach by bombesin. Am J Physiol 241: 242–247

    Google Scholar 

  24. Ekblad E, Hakanson R, Sundler S (1991) Microanatomy and chemical coding of peptide containing neurons in the digestive tract. In Daniel EE (ed) Neuropeptide function in the gastrointestinal tract. CRC Press, Boca Raton, pp 139–179

    Google Scholar 

  25. Fahrenkrug J, Galbo H, Holst JJ (1978) Influence of the autonomic nervous system on the release of VIP from the porcine gastrointestinal tract. J Physiol (Lond) 280: 405–422

    CAS  Google Scholar 

  26. Fox JET, Daniel EE, Jury J et al. (1983) Cholinergic control mechanisms for immunoreactive motilin release and motility in the canine duodenum. Can J Physiol Pharmacol 61: 1042–1049

    Article  PubMed  CAS  Google Scholar 

  27. Furness JB, Costa M (1982) Identification of gastrointestinal neurotransmitter. In: Bertaccini G (ed) Mediators and drugs in gastrointestinal motility 1. Morphological basis and neuro- physiological control. Springer, Berlin Heidelberg New York, p 384

    Google Scholar 

  28. Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh London

    Google Scholar 

  29. Furness JB, Costa M (1989) Identification of transmitters of functionally defined enteric neurons. In: Schultz SG (ed). Handbook of physiology, section VI. The gastrointestial system. Maryland, Am Physiological Society, pp 387–402

    Google Scholar 

  30. Grider JR, Makhlouf GM (1986) Colonic peristaltic reflex: identification or vasoactive intestinal peptide as mediator of the descending relaxation. Am J Physiol 251: G40–G45

    PubMed  CAS  Google Scholar 

  31. Holzer P (1984) Characterization of the stimulus-induced release of immunoreactive substance P from the myenteric plexus of the guinea-pig small intestine. Brain Res 297: 127–136

    Article  PubMed  CAS  Google Scholar 

  32. Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin-gene-related peptide and other neuropeptides. Neurosci 24: 739–768

    Article  CAS  Google Scholar 

  33. Jonakait MG, Gintzler AR, Gershon MD (1979) Isolation of axonal varicosities (autonomic synaptosomes) from the enteric nervous system. J Neurochem 32: 1387–1400

    Article  PubMed  CAS  Google Scholar 

  34. Jonakait MG, Tamir H, Gintzler AR, Gershon MD (1979) Release of 3H-serotonin and its binding protein from enteric neurons. Brain Res 174: 55–69

    Article  PubMed  CAS  Google Scholar 

  35. Keast JR, Furness JB, Costa M (1985) Distribution of certain peptide-containing nerve fibers and endocrine cells in the gastrointestinal mucosa in five mammalian species. J Comp Neurol 236: 403–422

    Article  PubMed  CAS  Google Scholar 

  36. Kilbinger H (1984) Facilitation and inhibition by muscarinic agonists of acetylcholine release from guinea-pig myenteric plexus. Trends Pharmacol Sci 5 (Suppl): 49–52

    Article  Google Scholar 

  37. Kilbinger H (1985) Subtypes of muscarinic receptors modulating acetylcholine release from myenteric nerves. In: Lux G, Daniel EE (eds) Muscarinic receptor subtypes in the GI-Tract. Springer, Berlin, pp 37–42

    Chapter  Google Scholar 

  38. Lambrecht G, Mutschler E (1985) Selective inhibition of muscarinic receptors in intestinal smooth muscle. In: Lux G, Daniel EE (eds) Muscarinic receptor subtypes in the GI-Tract. Springer, Berlin, pp 20–27

    Chapter  Google Scholar 

  39. Manaka H, Manaka Y, Kostolanska F et al. (1989) Release of VIP and substance P from isolated perfused canine ileum. Am J Physiol 257: G182–G190

    PubMed  CAS  Google Scholar 

  40. Mayer EA, Koebel CBM, Snape WJ et al. (1990) Substance P and CGRP mediate motor response of rabbit colon to capsaicin. Am J Physiol 259: G889–G897

    PubMed  CAS  Google Scholar 

  41. McKnight AT, Sosa RP, Hughes J, Kosterlitz HW (1978) Biosynthesis and release of enkephalins. In: Van Ree JM, Terenius L (eds) Characteristics and function of opioids. Amsterdam, Elsevier, pp 259–269

    Google Scholar 

  42. Moody TW, Kris RM, Fiskum G et al. (1989) Characterization of receptors for bombesin/gastrin releasing peptide in human and murine cells. In: Conn PM Methods in Enzymology. Vol. 168 Academic Press, London New York, pp 481–493

    Google Scholar 

  43. Mussap CJ, Geraghty DP, Burcher E (1993) Tachykinin receptors: A radioligand binding perspective. J Neurochem 60: 1987–2009

    Article  PubMed  CAS  Google Scholar 

  44. Nishi S, North RA (1973) Intracellular recording from the myenteric plexus of the guinea pig ileum. J Physiol (Lond) 231: 471–491

    CAS  Google Scholar 

  45. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  46. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthetize nitric oxide from L-arginine. Nature 33: 664–666

    Article  Google Scholar 

  47. Penman E, Wass JAH, Butler MG (1983) Distribution and characterization of immunoreactive somatostatin in human gastrointestinal tract. Regul Pept 7: 53–65

    Article  PubMed  CAS  Google Scholar 

  48. Potter LT (1970) Synthesis, storage and release of 14C-acetylcholine in isolated rat diaphragm muscle. J Physiol (Lond) 206: 145–166

    CAS  Google Scholar 

  49. Rattan S, Chakder S (1992) Role of nitric oxide as a mediator of internal sphincter relaxation. Am J Physiol 262: G107–G112

    PubMed  CAS  Google Scholar 

  50. Rees DD, Palmer RMJ, Hodson HF, Moncada S (1989) A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependend relaxation. Br J Pharmacol 96: 418–424

    PubMed  CAS  Google Scholar 

  51. Reeve JR, Walsh JH (1989) Characterizing molecular heterogenity of gastrin-releasing peptide and related peptides; in methods in Enzymology. Academic Press, London New York, pp 660–677

    Google Scholar 

  52. Said SL (1984) Vasoactive intestinal polypeptide: current status. Peptides 5: 143–150

    Article  PubMed  CAS  Google Scholar 

  53. Schultzberg M, Hökfelt M, Nilsson G et al. (1980) Distribution of peptide and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea pig: immunohistoche- mical studies with antisera to substance P; vasoactive intestinal peptide, enkephalins, somatostatin, gastrin, cholecystokinin, neurotensin and dopamine b-hydroxylase. Neurosci 5: 689–744

    Article  CAS  Google Scholar 

  54. Schultzberg M (1983) Bombesin-like immunoreactivity in sympathetic ganglia. Neurosci 8: 363–374

    Article  CAS  Google Scholar 

  55. Schusdziarra V, Harris V, Conlon JM et al. (1978) Pancreatic and gastric somatostatin release in response to intragastric and intraduodenal nutrients and HCL in the dog. J Clin Invest 62: 509–518

    Article  PubMed  CAS  Google Scholar 

  56. Schusdziarra V, Roullier D, Harris V, Unger RH (1978) Release of gastric somatostatin like immunoreactivity during acidification of the duodenal bulb. Gastroenterology 76: 950–953

    Google Scholar 

  57. Schusdziarra V, Bender H, Pfeiffer EF (1983) Release of bombesin like immunoreactivity from the isolated perfused rat stomach. Regul Pept 7: 21–29

    Article  PubMed  CAS  Google Scholar 

  58. Schusdziarra V, Schmid R, Bender H et al. (1986) Effekt of vasoactive intestinal polypeptide, peptide histidine isoleucine and growth hormone releasing factor 40 on bombesin-like immunoreactivity, somatostatin and gastrin release from the perfused rat stomach. Peptides 7: 127–133

    Article  PubMed  CAS  Google Scholar 

  59. Soll A, Yamada T, Park J, Thomas L (1984) Release of somatostatin-like immunoreactivity from canine fundic mucosal cells in primary culture. Am J Physiol 247: G558–G566

    PubMed  CAS  Google Scholar 

  60. Szerb JC (1976) Storage and release of labelled acetylcholine in the myenteric plexus of the guinea pig ileum. Can J Physiol Pharmacol 54: 12–22

    Article  PubMed  CAS  Google Scholar 

  61. Szerb JC (1982) Correlation between acetylcholine release and neuronal activity in the guinea-pig ileum myenteric plexus. Effect of morphine. Neurosci 7: 327–340

    Article  CAS  Google Scholar 

  62. Talley NJ (1992) Review article: 5-Hydroxytryptamine agonists and antagonists in the modulation of gastrointestinal motility and sensation: clinical implications. Aliment Pharmacol Ther 6: 273–289

    Article  PubMed  CAS  Google Scholar 

  63. Torphy TJ, Fine CF, Burman M et al. (1986) Lower esophageal sphincter relaxation is associated with increased cyclic nucleotide content. Am J Physiol 251: G786–G793

    PubMed  CAS  Google Scholar 

  64. Tottrup A, Knudsen M, Gregersen H (1991) The obligatory role of nitric oxide synthesis for lower esophageal sphincter relaxation. Gastroenterology 100 (Abstract): A501

    Google Scholar 

  65. Vigna SR, Mantyh CR, Giraud AS et al. (1987) Localisation of specific binding site for bombesin in the canine gastrointestinal tract. Gastroenterology 93: 1287–1295

    PubMed  CAS  Google Scholar 

  66. Vizi ES, Ono K, Adam-Vizi V et al. (1984) Presynaptic inhibitory effect of met-enkephalin on [14C] acetylcholine release from the myenteric plexus and its interaction with muscarinic negative feedback inhibition. J Pharmacol Exp Ther 230: 493–499

    PubMed  CAS  Google Scholar 

  67. Wood JD (1989) Electrical and synaptic behaviour of enteric neurons; in Schultz GS (ed): Handbook of Physiology, Section VI. Part I Motility and circulation. Am Physiological Society, Maryland, pp 465–517

    Google Scholar 

  68. Yamato S, Goyal RK (1991) Evidence for nitric oxide as an inhibitory neurotransmitter in the lower esophageal sphincter. Gastroenterology 100 (Abstract): A510.

    Google Scholar 

  69. Yau WM (1985) Presynaptic site of action of substance P and vasoactive intestinal polypeptide on myenteric neurons. Brain Res 330: 382–385

    Article  PubMed  CAS  Google Scholar 

  70. Yau WM (1989) Neurotransmitter release in the enteric nervous system. In: Schultz SG (ed) Handbook of Physiology, section VI: Part I Motility and circulation. Am Physiological Society, Maryland, pp 403–433

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurjak, M., Allescher, H.D. (1993). Neurotransmitter im enterischen Nervensystem. In: Zeitz, M., Caspary, W.F., Bockemühl, J., Lux, G. (eds) Ökosystem Darm V. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78733-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78733-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57591-7

  • Online ISBN: 978-3-642-78733-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics