Classical Motion in an Atomic Potential. Atomic Structure

  • Valery S. Lisitsa
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 14)


The foundations of radiation theory for a classically moving particle (electron) in a given potential V(r) are stated in numerous books on classical electrodynamics [2.1, 2]. In accordance with [2.3–6], we shall dwell on a number of classical spectral peculiarities with the attractive potential V(r) = − |V(r)| playing an important role in the applicability of the classical method to atomic physics. The essence of the problem involves the situation when an emitting electron in an attractive field experiences an acceleration and may obtain the kinetic energy W = E+ |V(r)|, considerably exceeding its initial energy E at infinity. In this case the classical nature of electron motion is preserved even when the quantum energy ħω emitted by the electron exceeds its initial energy E. The circumstance essentially expands the applicability domain of classical description methods for atomic processes, including the inelastic domain ħωE. Below, we will focus on the Coulomb field case playing an important part in atomic processes in plasmas. Atomic potentials of a more general type are investigated in [2.4]. The results of following consideration will be used later in the quasiclassical approximation constructions for radiation transition probabilities.


Atomic State Helium Atom Rydberg State Lamb Shift Nonhydrogenic Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    J. Jackson: Classical Electrodynamics (Wiley, New York 1975)MATHGoogle Scholar
  2. 2.2
    L.D. Landau, E.M. Lifshitz: The Classical Theory of Fields (Pergamon, Oxford 1975)Google Scholar
  3. 2.3
    V.L. Gervids, V.L. Kogan: Pisma Zh. Eksp. Teor. Fiz. 22, 308 (1975) [English transl.: JETP Lett. 22, 142 (1975)]Google Scholar
  4. 2.4
    V.L. Kogan, A.B. Kukushkin: Zh. Eksp. Teor. Fiz. 87, 1164 (1984) [English transl.: Sov. Phys. JETP 60, 665 (1984)]ADSGoogle Scholar
  5. 2.5
    V.L. Gervids, V.L. Kogan: Electron Bremsstrahlung in a Static Potential. Review (CNII Atominform-IAE, Moscow 1988). English transl.: Polarization Bremsstrahlung of Particles and Atoms, ed. by V.N. Tsytovich, I.M. Oiringel (Plenum, New York 1991), p.Google Scholar
  6. 2.6
    V.L. Kogan, A.B. Kukushkin, V.S. Lisitsa: Phys. Rep. 213, 1 (1992)ADSCrossRefGoogle Scholar
  7. 2.7
    H.A. Kramers: Phil. Mag. 46, 836 (1923)Google Scholar
  8. 2.8
    J.W.B. Hughes: Proc. Phys. Soc. 91, 810 (1967)ADSCrossRefGoogle Scholar
  9. 2.9
    L. D. Landau, E. M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory (Perga- mon, Oxford 1977)Google Scholar
  10. 2.10
    U.I. Safronova, V.S. Senashenko: Theory of Multicharged Ions Spectra (Energoiz- dat, Moscow 1983) (in Russian)Google Scholar
  11. 2.11
    RI.K. Janev, L.R Presnyakov, V.P. Shevelko: Physics of Highly Charged Ions, Springer Ser. Electroph., Vol. 13 (Springer, Berlin, Heidelberg 1985)Google Scholar
  12. 2.12
    H.A. Bethe, E.E. Salpeter: Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, Heidelberg 1958)Google Scholar
  13. 2.13
    G.W. Erickson: Phys. Rev. Lett. 27, 780 (1971)ADSCrossRefGoogle Scholar
  14. 2.14
    A.G. Zhidkov, A.N. Tkachev, S.I. Yakovlenko: Zh. Eks. Teor. Fiz. 91, 445 (1986) English transl.: Sov. Phys.-JETP 64, 261 (1986)]ADSGoogle Scholar
  15. 2.15
    G. Luders: Ann. Phys. Leipzig 8, 301 (1951)MathSciNetGoogle Scholar
  16. 2.16
    E.Kh. Ahmedov, A.L. Godunov, Yu.K. Zemtsov, V.A. Makhrov, A.N. Starostin, M.D. Taran: Zh. Eksp. Teor. Fiz. 89, 470 (1985) [English transl.: Sov. Phys.-JETP 62, 266 (1985)]ADSGoogle Scholar
  17. 2.17
    S. Klarsfeld: Phys. Lett. 30 A, 382 (1969)ADSGoogle Scholar
  18. 2.18
    S. Suckewer, Phys. Scr.23, 772 (1981)CrossRefGoogle Scholar
  19. 2.19
    V. A. Brysgunov, S. Yu. Luk’anov, M. T. Pakhomov: Zh. Eks. Teor. Fiz. 82,1904 (1982) [English transl.: Sov. Phys.-JETP 55, 1095 (1982)]Google Scholar
  20. 2.20
    W. Heitler: Quantum Theory of Radiation (Clarendon, Oxford 1954)MATHGoogle Scholar
  21. 2.21
    U. Fano: Phys. Rev.124, 1866 (1961)ADSMATHCrossRefGoogle Scholar
  22. 2.22
    A. S. Kompaneets: Zh. Eks. Teor. Fiz. 54, 914 (1968) [English transl.: Sov. Phys.-JETP 27, 519 (1968)]Google Scholar
  23. 2.23
    R. F. Stebbings, F. B. Dunning (eds.): Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge 1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Valery S. Lisitsa
    • 1
  1. 1.Kurchatov Institute of Atomic EnergyMoscowRussia

Personalised recommendations