Geomagnetic Activity Indices

  • Walter Dieminger
  • Gerd K. Hartmann
  • Reinhart Leitinger


The predominant part of the geomagnetic field, as observed at the Earth’s surface, originates from sources in the Earth’s core and, to a lesser degree, in the Earth’s crust. Spatial distribution and secular variation of this internal part were described, e.g., by Schmucker (1985). Superimposed, there is a small external part due to large-scale current systems in the ionosphere and magnetosphere finally resulting from the motion of charged particles in the Earth’s magnetic field. Short-term time variations of the external part are governed by solar wave (W) and particle (P) radiation and thus may serve to yield information on solar-terrestrial relationships that otherwise cannot so easily and continuously be achieved.


Solar Wind Solar Cycle Coronal Hole Sunspot Number Geomagnetic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels J (1932) Terrestrial-magnetic activity and its relations to solar phenomena. Ten Magn 37: 1–52CrossRefGoogle Scholar
  2. Bartels J (1940) Bestimmung täglicher internationaler erdmagnetischer Charakterzahlen für Jahre vor 1890. IATME Bull 11, IUGG Publ Office, Paris, pp 183–195Google Scholar
  3. Bartels J (1951a) An attempt to standardize the daily international magnetic character figure. IATME Bull 12e, IUGG Publ Office, Paris, pp 109–137Google Scholar
  4. Bartels J (1951b) Tägliche erdmagnetische Charakterzahlen 1884–1950 und Planetarische dreistündliche erdmagnetische Kennziffern Kp 1932/33 und 1940–1950. Abh Akad Wiss Göttingen, Math -Phys KI, Sonderheft, Vandenhoeck und Ruprecht, GöttingenGoogle Scholar
  5. Bartels J (1949/55) The standardized index, Ks, and the planetary index Kp. IATME Bull 12b, IUGG Publ Office, Paris 1949 pp 97–112; reprinted in: IAGA Bull 12i, IUGG Publ Office, Paris 1955 pp 88–101Google Scholar
  6. Bartels J (1957a) The technique of scaling indices K and Q of geomagnetic activity. Ann Int Geophys Year 4: 215–226Google Scholar
  7. Bartels J (1957b) The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation studies in other geophysical fields, Ann Int Geophys Year 4:227–236Google Scholar
  8. Bartels J (1958) Planetary geomagnetic activity in graphic representation: daily Cp, 1937–1958, three-hourly Kp, 1937–1939, 1950–1958, Abh Akad Wiss Göttingen, Math -Phys Kl, Beitr Int Geophys J, Heft 3, Vandenhoeck und Ruprecht, GöttingenGoogle Scholar
  9. Chapman S, Bartels J (1940) Geomagnetism, vol II. Clarendon, OxfordGoogle Scholar
  10. Damaske D (1977) Magnetospheric modulation of geomagnetic activity, I. Harmonic analysis of quasi-logarithmic indices Km, Kn, and Ks. Ann Géophys 33: 461–478Google Scholar
  11. Damaske D (1978) Magnetospheric modulation of geomagnetic activity, II. Harmonic analysis of linear indices am, an, and as. Ann Géophys 34: 231–242Google Scholar
  12. Davis TN, Sugiura M (1966) Auroral electrojet activity index AE and its universal time variations. J Geophys Res 71: 785–801Google Scholar
  13. Hufen J-H (1979) Die Wiederholungsneigung der erdmagnetischen Aktivität in den Jahren von 1890 bis 1977, erschlossen aus standardisierten Potsdamer Kennziffern As. Diploma Thesis, Inst Geophys, University of GöttingenGoogle Scholar
  14. Mayaud PN (1967a) Atlas of indices K, IAGA Bull 21, 1. Text, 2. Figures, IUGG Publ Office, ParisGoogle Scholar
  15. Mayaud PN (1967b) Calcul préliminaire d’indices Km, Kn et Ks ou am, an et as, mesures de l’activité magnétique à l’échelle mondiale et dans les hemispheres Nord et Sud. Ann Géophys 23: 585–617Google Scholar
  16. Mayaud PN (1968) Indices Kn, Ks et Km 1964–1967. Editions du Centre National de la Recherche Scientifique, ParisGoogle Scholar
  17. Mayaud PN (1973) A hundred year series of geomagnetic data, 1868–1967, indices aa, Storm sudden commencements. IAGA Bull 33, IUGG Publ Office, ParisGoogle Scholar
  18. Mayaud PN (1980) Derivation, meaning, and use of geomagnetic indices, Geophys Monograph 22, Am Geophys Union, Washington, DCCrossRefGoogle Scholar
  19. Meyer J (1965) Zur 27-täglichen Wiederholungsneigung der erdmagnetischen Aktivität, erschlossen aus den täglichen Charakterzahlen C8 von 1884–1964. In: Dieminger W, Ehmert A, Pfotzer G (eds) Mitt Max-Planck-Inst Aeronomie 22 Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Meyer J (1973) Zur Modulation der erdmagnetischen Aktivität. Geophys Abh Inst Geophys FU Berlin, Heft 3. Reimer, BerlinGoogle Scholar
  21. Meyer J (1978) The recurrence tendency of geomagnetic activity during solar cycle 20. J Geophys 44: 427–434Google Scholar
  22. Schmucker U (1985) Magnetic field of the Earth. In: Fuchs K, Soffel H (eds) Landolt-Börnstein, Neue Reihe vol V/2b, Springer, Berlin Heidelberg New York, pp 31–73Google Scholar
  23. Siebert M (1971) Maßzahlen der erdmagnetischen Aktivität. In: Rawer K (ed) Encyclopedia of Physics, vol XLIX/3. Springer, Berlin Heidelberg New York, pp 206–275Google Scholar
  24. Siebert M, Meyer J, Damaske D (1983) On derivation and significance of geomagnetic equivalent amplitude. indices. In: Cardús JO (ed) Publicationes del Observatorio del Ebro, Memoria 14. Contribuciones científicas para conmemorar el 75 aniversario del Observatorio del Ebro. Roquetes, pp 155–168Google Scholar
  25. Sugiura M (1964) Hourly values of equatorial Dst for the IGY. Ann Int Geophys Year 35: 9–45Google Scholar
  26. Sugiura M, Poros DJ (1971) Hourly values of equatorial Dsd for the years 1957 to 1970, GSFC Doc X–645–71–278, NASA Goddard Space Flight Center, Greenbelt MDGoogle Scholar
  27. Van Dijk G (1938) Magnetic character of the years 1890–1905. Ten Magn 43: 245–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Walter Dieminger
    • 1
  • Gerd K. Hartmann
    • 1
  • Reinhart Leitinger
    • 2
  1. 1.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany
  2. 2.Institut für Meteorologie und GeophysikUniversität GrazGrazAustria

Personalised recommendations