The Thermosphere: Selected Features

  • Walter Dieminger
  • Gerd K. Hartmann
  • Reinhart Leitinger

Abstract

The thermosphere is the region above the mesosphere and exhibits the strongest height variation of temperature of all atmospheric layers, from the absolute minimum at the mesopause to the absolute maximum, the exospheric temperature. It is also the region where the most drastic changes in atmospheric composition occur and where the atmosphere becomes partly ionized and acquires the properties of a magneto-plasma. The solar EUV radiation is absorbed in the thermosphere and here we localize most of the electric current systems which are responsible for the so-called variations of the geomagnetic field.

Keywords

Convection Argon Recombination Helium Flare 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nicolet M (1960) The properties and constitution of the upper atmosphere. In: Ratcliffe JA (ed) Physics of the upper atmosphere. Academic Press, New York, pp 17–71Google Scholar
  2. Sawyer JS (1963) Note on terminology and conventions for the high atmosphere. QJR Meteorol Soc 89: 156CrossRefGoogle Scholar
  3. Craig RA (1965) The upper atmosphere. Meteorology and physics. International Geophysics Series vol 8. Academic Press, New YorkGoogle Scholar
  4. Engebretson MJ, Mauersberger K, Kayser DC, Potter WE, Nier AO (1977) Empirical model of atomic nitrogen in the upper thermosphere. J Geophys Res 82: 461–471CrossRefGoogle Scholar
  5. Hedin AE (1983) A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J Geophys Res 88:10 170–10 188Google Scholar
  6. Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92: 4649–4662CrossRefGoogle Scholar
  7. Hedin AE (199la) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172CrossRefGoogle Scholar
  8. Hedin AE, Salah JA, Evans JV, Reber CA, Newton GP, Spencer NW, Kayser DC, Alcaydé D, Bauer P, Cogger L, McClure JP (1977a) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1. N2 density and temperature. J Geophys Res 82: 2139–2147CrossRefGoogle Scholar
  9. Hedin AE, Reber CA, Newton GP, Spencer NW, Brinton HC, Mayr HG, Potter WE (1977b) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 2. Composition. J Geophys Res 82: 2148–2156CrossRefGoogle Scholar
  10. Jacchia LG (1977) Thermospheric temperature, density, and composition: New models. Spec Rep 375, Smithonian Astrophys Observ, Cambridge, MassGoogle Scholar
  11. Köhnlein WD, Krankowsky D, Lämmerzahl P, Joos W, Volland H (1979) A thermospheric model of the annual variations of He, N, O, N2, and Ar from the AEROS NIMS data. J Geophys Res 84: 4355–4362CrossRefGoogle Scholar
  12. Albritton DL (1978) Ion-neutral reaction-rate constants measured in flow reactors through 1977. At Data Nucl Data Tables 22: 1CrossRefGoogle Scholar
  13. Anderson DA, Bernhardt PA (1978) Modeling the effects of an H2 gas release on equatorial ionosphere. J Geophys Res 83: 4777–4790CrossRefGoogle Scholar
  14. Banks PM, Kockarts G (1973) Aeronomy, vols A and B. Academic Press. OrlandoGoogle Scholar
  15. Bernhardt PA (1987) Critical comparison of ionospheric depletion chemicals. J Geophys Res 92: 4617–4628CrossRefGoogle Scholar
  16. Forbes JM (1980) Upper atmosphere modifications due to chronic discharges of water vapour from space launch vehicle exhaust. In: Garrett HB, Pike CP (eds) Space systems and their interactions with Earth’s space environment, Summerfield M (ed) Prog. in astronautics and aeronautics, vol 71, Inst Astronaut Aeronaut, New York, pp 78–94Google Scholar
  17. Mendillo M, (1988) Ionospheric holes: a review of theory and recent experiments. Adv Space Res 8: 51–62CrossRefGoogle Scholar
  18. Mendillo M, Forbes JM (1978) Artificially created holes in the Ionosphere. J Geophys Res 83: 151–162CrossRefGoogle Scholar
  19. Mendillo M, Hawkins GS, Klobuchar JA (1975) A sudden vanishing of the ionospheric F-region due to the launch of Skylab. J Geophys Res 80: 2217–2228CrossRefGoogle Scholar
  20. Mitchell JBA, McGowan JW (1983) Experimental studies of electron-ion recombination. In: Brouillard F, McGowan JW (eds) Physics of ion-ion and electron-ion collisions. Plenum, New YorkGoogle Scholar
  21. Nicolet M (1971) In: Fiocco G (ed) Mesospheric models and related experiments. Reidel, Dordrecht, pp 1–55Google Scholar
  22. Wand R, Mendillo M (1984) Incoherent scatter observations of an artificially modified ionosphere. J Geophys Res 89: 203–215CrossRefGoogle Scholar
  23. Yau AW, Whalen BA, Harris FR, Gattinger RL, Pongratz MB, Bernhardt PA (1985) Simulations and observations of plasma depletions, ion composition and airglow emissions in two auroral ionospheric depletion experiments. J Geophys Res 90: 8387–8406CrossRefGoogle Scholar
  24. Zinn J, Sutherland CD, Stone SN, Duncan LM, Behnke R (1982) Ionospheric effects of rocket exhaust products — HEAO-C, Skylab. J Atmos Terr Phys 44: 1143–1171Google Scholar
  25. Hedin AE (1983) A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J Geophys Res 88: 10170–10188CrossRefGoogle Scholar
  26. Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92: 4649–4662CrossRefGoogle Scholar
  27. Hedin AE (199la) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172Google Scholar
  28. Hedin AE, Salah JA, Evans JV, Reber CA, Newton GP, Spencer NW, Kayser DC, Alcaydé D, Bauer P, Cogger L, McClure JP (1977a) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1. N2 density and temperature. J Geophys Res 82: 2139–2147Google Scholar
  29. Hedin AE, Reber CA, Newton GP, Spencer NW, Brinton HC, Mayr HG, Potter WE (1977b) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 2. Composition. J Geophys Res 82: 2148–2156Google Scholar
  30. Hedin AE, Spencer NW, Killeen TL (1988) Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data. J Geophys Res 93: 9959–9978CrossRefGoogle Scholar
  31. Hedin AE, Biondi MA, Burnside RG, Hernandez G, Johnson RM, Killeen TL, Mazaudier C, Meriwether JW, Salah JE, Sica RJ, Smith RW, Spencer NW, Wickwar VB, Virdi TS (199 lb) Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res 96: 7657–7688Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Walter Dieminger
    • 1
  • Gerd K. Hartmann
    • 1
  • Reinhart Leitinger
    • 2
  1. 1.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany
  2. 2.Institut für Meteorologie und GeophysikUniversität GrazGrazAustria

Personalised recommendations