Antarctica — Where Space Meets Planet Earth

  • Michael J. Rycroft


A significant and ever increasing proportion of the human population of planet Earth is becoming informed — and concerned — about changes to the Earth’s environment; the atmosphere is rightly the focus of particular interest nowadays. Such changes may be either natural, such as due to volcanoes (both El Chichon in 1982 and Mount Pinatubo in 1991 put vast quantities of dust and sulphur into the lower stratosphere), or anthropogenic. Enhancement of the so-called greenhouse effect is caused by increasing the concentrations of infrared active trace gases in the atmosphere. This may be due to increased evaporation from the oceans (water vapour, H2O), deforestation or the burning of fossil fuels (carbon dioxide, CO2), increases of the cattle population or the area of paddy fields (methane, CH4), increases of chlorofluorocarbons (CFCs), or changed agricultural practices involving fertilizers (nitrous oxide, N2O).


Solar Wind Interplanetary Magnetic Field Polar Vortex Ozone Hole Geomagnetic Field Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnoldy RL, Cahill LJ, Engebretson MJ, Lanzerotti LJ, Wolfe A (1988) Review of hydromagnetic wave studies in the Antarctic. Rev Geophys 26: 181–207CrossRefGoogle Scholar
  2. Brasseur GP (1991) A deepening, broadening trend. Nature 352: 668–669CrossRefGoogle Scholar
  3. Cahill LJ, Sugiura M, Lin NG, Arnoldy RL, Shawhan SD (1984) Observations of an oscillating magnetic shell at three locations. J Geophys Res 89: 2735–2744CrossRefGoogle Scholar
  4. Cicerone RJ, Elliot S, Turco RP (1992) Global environmental engineering. Nature 356: 472CrossRefGoogle Scholar
  5. Crutzen PJ (1992) Ultraviolet on the increase. Nature 356: 104–105CrossRefGoogle Scholar
  6. Detrick DL, Rosenberg TJ (1990) A phased-array radio wave imager for studies of cosmic noise absorption. Radio Sci 25: 325–338CrossRefGoogle Scholar
  7. Domingo V, Schmidt R, Poland AI, Goldstein ML (1988) Soho and Cluster — the scientific instruments. ESA Bull 56: 25–33Google Scholar
  8. Dudeney JR, Rodger AS, Pinnock M, Ruohoniemi JN, Baker KB, Greenwald RA (1991) Studies of conjugate plasma convections in the vicinity of the Harang discontinuity. J Atmos Terr Phys 53: 249–263CrossRefGoogle Scholar
  9. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal CIOx/NOx interaction. Nature 315: 207–210CrossRefGoogle Scholar
  10. Green CA, Hamilton RA (1981) An ionospheric effect on the conjugate relationship of Pi2 magnetic pulsations. J Atmos Terr Phys 43: 1133–1141CrossRefGoogle Scholar
  11. Greenwald RA, Baker KB, Ruohoniemi JM, Dudeney JR, Pinnock M, Mattin N, Leonard JM, Lepping RP (1990) Simultaneous conjugate observations of dynamic variations in high-latitude dayside convection due to changes in IMF By. J Geophys Res 95: 8057–8072CrossRefGoogle Scholar
  12. Helliwell RA (1988) VLF stimulated experiments in the magnetosphere from Siple Station, Antarctica. Rev Geophys 26: 551–578CrossRefGoogle Scholar
  13. Herman JR, Hudson R, McPeters R, Stolarski R, Ahmad Z, Gu X-Y, Taylor S, Wellemeyer C (1991) A new self-calibration method applied to TOMS and SBUV backscattered ultraviolet data to determine long-term global ozone change. J Geophys Res 96: 7531–7545CrossRefGoogle Scholar
  14. Hurren PJ, Smith AJ, Carpenter DL, Inan US (1986) Burst precipitation induced perturbations on multiple VLF propagation paths in Antarctica. Ann Geophys 4: 311–318Google Scholar
  15. Ishizu M, Saka O, Kitamura T-I, Fukunishi H, Sato N, Fujii R (1981) Polarization study of Pel and Pcl-2 band pulsations at conjugate stations. Mem Natl Inst Polar Res Spec Issue, Japan 18: 118–126Google Scholar
  16. Kiehl JT (1992) Cold comfort in the greenhouse. Nature 355: 773CrossRefGoogle Scholar
  17. Lean J (1987) Solar ultraviolet irradiance variations: a review. J Geophys Res 92: 839–868CrossRefGoogle Scholar
  18. Lin ZM, Benbrook JR, Bering EA, Byrne GJ, Friis-Christensen E, Liang D, Liao B, Theall J (1990) Observations of ionospheric flux ropes above South Pole. Geophysical Monograph 58. American Geophysical Union, Washington, DC, pp 581–590Google Scholar
  19. Lockwood M, Coates A (1992) When the solar wind blows. New Sci 1811: 25–30Google Scholar
  20. Marchant HJ, Davidson AT, Kelly GJ (1991) UV-B protecting compounds in the marine alga Phaeocystis pouchetii from Antarctica. Mar Biol 109: 391–395CrossRefGoogle Scholar
  21. Mende SB, Rairden RL, Lanzerotti LJ, Maclennan CG (1990) Magnetic impulses and associated optical signatures in the dayside aurora. Geophys Res Lett 17: 131–134CrossRefGoogle Scholar
  22. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249: 810–812CrossRefGoogle Scholar
  23. Morrison K (1990) Quasi-periodic VLF emissions and concurrent magnetic pulsations seen at L = 4. Planet Space Sci 38: 1555–1565CrossRefGoogle Scholar
  24. Omura Y, Nunn D, Matsumoto H, Rycroft MJ (1991) A review of observational, theoretical and numerical studies of VLF triggered emissions. J Atmos Terr Phys 53: 351–368CrossRefGoogle Scholar
  25. O’Neill A (ed) (1990) Dynamics, transport and photochemistry in the middle atmosphere of the southern hemisphere. NATO ASI Series C 321. Kluwer, Dordrecht, 257 ppGoogle Scholar
  26. Paschal EW, Lanzerotti LJ, Maclennan CG (1990) Correlation of whistler mode phase delay with transient hydromagnetic waves. J Geophys Res 95: 15059–15071CrossRefGoogle Scholar
  27. Ramaswamy V, Schwarzkopf MD, Shine KP (1992) Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss. Nature 355: 810–812CrossRefGoogle Scholar
  28. Rodger AS, Smith A J (1989) Antarctic studies of the coupled ionosphere — magnetosphere system. Philos Trans R Soc Lond 328: 271–287CrossRefGoogle Scholar
  29. Russell CT (1991) The magnetosphere. Annu Rev Earth Planet Sci 19: 169–182CrossRefGoogle Scholar
  30. Rycroft MJ (1990) Antarctic research on the atmosphere and solar-terrestrial physics. Geodat Geophys Veroff Reihe I Berlin 15: 211–238Google Scholar
  31. Rycroft MJ (1990) The Antarctic atmosphere: a hot topic in a cold cauldron. Geograph J 156: 1–11CrossRefGoogle Scholar
  32. Rycroft MJ (1990) Quo vadimus re the springtime Antarctic ozone depletion? Adv Space Res 10: 275–277CrossRefGoogle Scholar
  33. Rycroft MJ (1991) Atmospheric and space research from the polar regions. Phys Educ 26: 153–158CrossRefGoogle Scholar
  34. Rycroft MJ (1991) Interactions between whistler-mode waves and energetic electrons in the coupled system formed by the magnetosphere, ionosphere and atmosphere. J Atmos Terr Phys 53: 849–858CrossRefGoogle Scholar
  35. Rycroft MJ, Smith AJ, Jones D, Dudeney JR, Shawhan SD (1984) Global geospace study. Nature 310: 449CrossRefGoogle Scholar
  36. Saxton JM, Smith AJ (1991) Electric fields at L = 2.5 during geomagnetically disturbed conditions. Planet Space Sci 39: 1305–1320CrossRefGoogle Scholar
  37. Schnell RC, Liu SC, Oltmans SJ, Stone RS, Hofmann DJ, Dutton EG, Deshler T, Sturges WT, Harder JW, Sewell SD, Trainer M, Harris JM (1991) Decrease of summer tropospheric ozone concentrations over Antarctica. Nature 351: 726–729CrossRefGoogle Scholar
  38. Shanklin JD, Gardiner BG (1989) The Antarctic ozone hole. British Antarctic Survey, Cambridge, 9 ppGoogle Scholar
  39. Shapland D, Rycroft M (1984) Spacelab — research in Earth orbit. Cambridge University Press, Cambridge, 192 ppGoogle Scholar
  40. Sheldon WR, Benbrook JR, Bering EA (1988) Rocket investigations of electron precipitation and VLF waves in the Antarctic upper atmosphere. Rev Geophys 26: 519–533CrossRefGoogle Scholar
  41. Smith AJ, Clilverd MA (1991) Magnetic storm effects on the mid-latitude plasmasphere. Planet Space Sci 39: 1069–1079CrossRefGoogle Scholar
  42. Smith AJ, Carpenter DL, Corcuff Y, Rash JPS, Bering EA (1991) The longitudinal dependence of whistlers and chorus characteristics observed on the ground near L = 4. J Geophys Res 96: 275–284CrossRefGoogle Scholar
  43. Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Maclntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–959PubMedCrossRefGoogle Scholar
  44. Stephenson JAE, Scourfield MWJ (1991) Importance of energetic solar protons in ozone depletion. Nature 352: 137–139CrossRefGoogle Scholar
  45. Thompson AM (1991) New ozone hole phenomenon. Nature 352: 282–283CrossRefGoogle Scholar
  46. Tonegawa Y, Fukunishi H, Hirasawa T, McPherron RL, Sakurai T, Kato Y (1984) Spectral characteristics of Pc3 and Pc4/5 magnetic pulsation bands observed near L = 6. J Geophys Res 89: 9720–9730CrossRefGoogle Scholar
  47. Troshichev OA, Gusev MG, Nickolashkin SV, Samsonov VP (1988) Features of the polar cap aurorae in the southern polar region. Planet Space Sci 36: 429–439CrossRefGoogle Scholar
  48. Weller G, Bentley CR, Elliot DH, Lanzerotti LJ, Webber PJ (1987) Laboratory Antarctica: research contributions to global problems. Science 238: 1361–1368PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Michael J. Rycroft
    • 1
  1. 1.College of AeronauticsCranfield Institute of TechnologyCranfield, BedfordUK

Personalised recommendations