Impact of Shelf and Sea Ice on Water Mass Modifications and Large-Scale Oceanic Circulation in the Weddell Sea

  • Eberhard Fahrbach
  • Ernst Augstein
  • Dirk Olbers


The thermohaline circulation of the global ocean is driven to a large extent by water mass modifications that take place in the northern and southern Atlantic Ocean and its adjacent seas. In the Arctic and northern Atlantic Oceans, lateral and vertical mixing leads to the formation of North Atlantic Deep Water, a layer whose characteristics can be traced throughout the deep layers of most of the world ocean. South of the Antarctic Circumpolar Current, however, density layers influenced by the North Atlantic are shallow and they consequently lose large quantities of heat to the atmosphere. This occurs both through direct contact of the upper ocean/sea ice layer with the atmosphere or indirectly by conduction through the quasi-permanent ice shelves. Such heat losses initiate processes that produce cold and dense water masses, with the most important being formed in the Weddell Sea which in turn recirculate back toward the north at abyssal depths as various forms of Antarctic Bottom Water.


Southern Ocean Antarctic Peninsula Antarctic Circumpolar Current North Atlantic Deep Water Antarctic Bottom Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augstein E, Bagriantsev N, Schenke HW (1991) The Expedition ANTARKTIS VIII/1–2, 1989, with the Winter Weddell Gyre Study of the research vessels „Polarstern“and „Akademik Fedorov“. Ber Polarforsch 84: 134Google Scholar
  2. Bagriantsev NV, Gordon AL, Huber BA (1989) Weddell Gyre: temperature maximum stratum. J Geophys Res 94: 8331–8334CrossRefGoogle Scholar
  3. Bainbridge AE (1976) GEOECS Atlantic Expedition, vol 2. Sections and profiles. National Science Foundation, Washington, 198 ppGoogle Scholar
  4. Bathmann U, Schulz-Baldes M, Fahrbach E, Smetacek V, Hubberten HW (eds) (1992) The expedition ANTARKTIS IX/1-4, 1990/91. Ber Polarforsch 100: 403Google Scholar
  5. Brennecke W (1921) Die ozeanographischen Arbeiten der Deutschen Antarktischen Expedition 1911–1912. Arch Dtsch Seewarte 39: 1–214Google Scholar
  6. Broecker WS, TH Peng (1982) Tracers in the ocean. Eldigio, Palisades, New York, 690 ppGoogle Scholar
  7. Buchan A (1895) Report on oceanic circulation, based on the observations made on board H.M.S. Challenger, and other observations. In: Report on the scientific results of the voyage of H.M.S. Challenger during the years 1872–76, a summary of the scientific results, second part, Appendix (Physics and Chemistry Part VIII ), Her Majesty’s Government, London, 38 ppGoogle Scholar
  8. Carmack EC (1977) Water characteristics of the Southern Ocean south of the Polar Front. In: Angel M (ed) A voyage of discovery, George Deacon 70th Anniversery Vol. Pergamon Press, Oxford, pp 15–41Google Scholar
  9. Carmack EC (1986) Circulation and mixing in ice-covered waters. In: Untersteiner N (ed) The geophysics of sea ice. NATO ASI Ser B, Physics, vol 146. Plenum, New York, pp 641–712Google Scholar
  10. Carmack EC (1990) Large-scale physical oceanography of polar oceans. In: Smith WO Jr (ed) Polar oceanography, part A, physical science. Academic Press, San Diego, pp 171–222Google Scholar
  11. Carmack EC, Foster TD (1975) Circulation and distribution of oceanographic properties near the Filchner Ice Shelf. Deep-Sea Res 22: 77–90Google Scholar
  12. Carmack EC, Foster TD (1975) On the flow of water out of the Weddell Sea. Deep-Sea Res 22: 711–724Google Scholar
  13. Carsey FD (1980) Microwave observation of the Weddell polynya. Mon Weather Rev 108: 2032–2044CrossRefGoogle Scholar
  14. Comiso JC (1991) Satellite remote sensing of the Polar Oceans. J Mar Syst 2: 395–434CrossRefGoogle Scholar
  15. Comiso JC, Gordon AL (1987) Recurring polynyas over the Cosmonaut Sea and the Maud Rise. J Geophys Res 92: 2819–2834CrossRefGoogle Scholar
  16. Deacon GER (1937) The hydrology of the Southern Ocean. Discovery Rep 15: 3–122Google Scholar
  17. Determann J (1991) Numerical modelling of ice shelf dynamics. Antarct Sci 3: 187–195CrossRefGoogle Scholar
  18. Emery WJ, Meincke J (1986) Global water masses: summary and review. Oceanol Acta 9: 383–391Google Scholar
  19. Fahrbach E, Knoche M, Rohardt G (1991) An estimate of water mass transformation in the southern Weddell Sea. Mar Chem 35: 25–44CrossRefGoogle Scholar
  20. Fahrbach E, Rohardt G, Krause G (1992) The Antarctic Coastal Current in the southeastern Weddell Sea. Polar Biol 12: 171–182CrossRefGoogle Scholar
  21. Foldvik A, Gammelsrod T, Torresen T (1985) Circulation and water masses on the southern Weddell Sea shelf. In: Jacobs SS (ed) Oceanology of the Antarctic Continental Shelf. Antarct Res Ser 43: 5–20CrossRefGoogle Scholar
  22. Foster TD, Carmack EC (1976) Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res 23: 301–317Google Scholar
  23. Foster TD, Carmack EC (1976b) Temperature and salinity structure in the Weddell Sea. J Phys Oceanogr 6: 36–44CrossRefGoogle Scholar
  24. Gill AE (1973) Circulation and bottom water production in the Weddell Sea. Deep-Sea Res 20: 111–140Google Scholar
  25. Gordon AL (1971) Antarctic Polar Front Zone. In: Reid JL (ed) Antarctic oceanology I. Antarct Res Ser 15: 205–221CrossRefGoogle Scholar
  26. Gordon AL (1991) Two stable modes of Southern Ocean winter stratification. In: Chu PC, Gascard JC (eds) Deep convection and deep water formation in the oceans, Elsevier, Amsterdam, pp 17–35CrossRefGoogle Scholar
  27. Gordon AL, Comiso JC (1988) Polynyas in the Southern Ocean. Sci Am 256: 90–97CrossRefGoogle Scholar
  28. Gordon AL, Huber BA (1990) Southern Ocean winter mixed layer. J Geophys Res 95: 655–11672Google Scholar
  29. Gordon AL, Huber BA, Hellmer HH, Ffield A (1993) Deep and Bottom Water of the Weddell Sea’s Western rim. Science 262: 95–97PubMedCrossRefGoogle Scholar
  30. Hellmer HH, Olbers DJ (1991) On the thermohaline circulation beneath the Filchner-Ronne Ice Shelves. Antarct Sci 3: 433–442CrossRefGoogle Scholar
  31. Jenkins A, Doake CSM (1991) Ice-Ocean interaction on Ronne Ice Shelf, Antarctica. J Geophys Res 9: 791–813CrossRefGoogle Scholar
  32. Killworth PD (1983) Deep convection in the world ocean. Rev Geophys Space Phys 21: 1–26CrossRefGoogle Scholar
  33. Kottmeier C, Engelbart D (1992) Generation and atmospheric heat exchange of coastal polynyas in the Weddell Sea. Boundary-layer Meteorol 60: 207–234CrossRefGoogle Scholar
  34. Kottmeier C, Olf J, Frieden W, Roth R (1992) Wind forcing and ice motion in the Weddell Sea region. J Geophys Res 97: 20373–20383Google Scholar
  35. Lemke P, Viehoff T (1991) Anwendungen der Fernerkundung in der Meereisforschung. Geowissenschaften 9: 266–271Google Scholar
  36. Lemke P, Owens WB, Hibler WD III (1990) A coupled sea ice-mixed layer-pycnocline model for the Weddell Sea. J Geophys Res 95: 9513–9526CrossRefGoogle Scholar
  37. Mantyla AW, Reid JL (1983) Abyssal characteristics of the World Ocean waters. Deep-Sea Res 30: 805–833CrossRefGoogle Scholar
  38. Martinson DG (1990) Evolution of the Southern Ocean winter mixed layer and sea ice: open ocean deepwater formation and ventilation. J Geophys Res 95: 11641–11654CrossRefGoogle Scholar
  39. Mosby H (1934) The waters of the Atlantic Ocean. Scientific Results of the Norwegian Antarctic Expedition 1927–1928.Google Scholar
  40. Norske Videnskaps-Akademi, Oslo 1: 1–131Google Scholar
  41. Nicholls KW, Makinson K, Robinson AV (1991) Ocean circulation beneath the Ronne Ice Shelf. Nature 354 (6530): 221–223CrossRefGoogle Scholar
  42. Olbers D, Wübber C (1991) The role of wind and buoyancy forcing of the Antarctic Circumpolar Current. In: Latif M (ed) Strategies for future climate research, Max-Planck-Institut für Meteorologie, Hamburg, pp 161–192Google Scholar
  43. Orsi AH, Nowlin WD Jr, Whitworth T III (1993) On the circulation and stratification of the Weddell Gyre. Deep-Sea Res 40: 164–203Google Scholar
  44. Schlosser P, Bayer R, Foldvik A, Gammelsrod T, Rohardt G, Miinnich KO (1990) Oxgen 18 and helium as tracers of ice shelf water and water/ice interaction in the Weddell Sea. J Geophys Res 95: 3253–3264CrossRefGoogle Scholar
  45. Schnack-Schiel S (ed) (1987) Die Winter-Expedition mit FS “Polarstern” in die Antarktis (ANT V/l-3). Ber Polarforsch 39: 259Google Scholar
  46. Smith SD, Muench RD, Pease CH (1990) Polynyas and leads: an overview of the physical process and environment. J Geophys Res 95: 9461–9480CrossRefGoogle Scholar
  47. Stommel H, Arons AB (1960) On the abyssal circulation of the World Oceans. Deep-Sea Res 6: 140–154Google Scholar
  48. Sverdrup HU (1954) The Currents off the Coast of Queen Maud Land. Nor Geograf Tidsskr 14: 239–249CrossRefGoogle Scholar
  49. Swift JH (1984) The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic. Deep-Sea Res 31: 1339–1355CrossRefGoogle Scholar
  50. Untersteiner N (ed) (1986) The geophysics of sea ice. NATO ASI Ser B, Physics; vol 146. Plenum, New York, 1196 ppGoogle Scholar
  51. Warren BA (1981) Deep circulation of the World Ocean. In: Warren BA, Wunsch C (eds) Evolution to physical oceanography. MIT Press, Cambridge, pp 6–41Google Scholar
  52. Webb DJ, Killworth PD, Coward AC, Thompson SR (1991) The FRAM atlas of the Southern Ocean. Natural Environment Research Council, Swindon, 67 ppGoogle Scholar
  53. Weiss RF, Ostlund HG, Craig H (1979) Geochemical studies of the Weddell Sea. Deep-Sea Res 26: 1093–1120CrossRefGoogle Scholar
  54. Worthington LV (1981) The water masses of the world ocean: some results of a fine-scale census. In: Warren BA, Wunsch C (eds) Evolution of physical oceanography. MIT Press, Cambridge, pp 42–69Google Scholar
  55. Wüst G (1933) Das Bodenwasser und die Gliederung der Atlantischen Tiefsee. Wiss Ergeb Dtsch Atlant Exped “Meteor” 1925–1927, 6 Walter de Gruyter, Berlin, pp 1–106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Eberhard Fahrbach
    • 1
  • Ernst Augstein
    • 1
  • Dirk Olbers
    • 1
  1. 1.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenGermany

Personalised recommendations