Advertisement

Medikamentöse Einflüsse auf das Skelett aus pathologischer Sicht

  • C. P. Adler
  • H. E. Schaefer
Conference paper

Zusammenfassung

Das Skelett unterliegt physiologisch einem ständigen Umbau, der der Strukturerhaltung und der Regulation des Kalziumstoffwechsels dient. Dieser Knochenumbau zeigt sich histomorphologisch durch eine Aktivierung von Osteoblasten für einen Knochenanbau und von Osteoklasten für einen Knochenabbau. Er wird physiologisch durch eine Reihe von Signalsubstanzen gesteuert. Medikamente und andere therapeutische Maßnahmen wirken sich auf die Struturen des Skeletts aus, was wir histologisch an einer Knochenresorption (Resorptionslakunen mit Osteoklasten) oder an einem Knochenanbau (Anbaufronten mit Osteoblasten) erkennen. Bei Mineralisationsstörungen beobachten wir verbreiterte Osteoidsäume (Osteoidose). Bei der Diagnostik müssen die radiologischen Strukturveränderungen (Röntgenbild, CT, Szintigraphie, NRI) mit berücksichtigt werden. Bei systemischen Skeletterkrankungen wird eine Beckenkammbiopsie für die histologische Untersuchung benutzt; bei lokalisierten Läsionen ist eine gezielte Biopsie erforderlich.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adler CP (1983) Knochenkrankheiten. Diagnostik makroskopischer, histologischer und radiologischer Strukturveränderungen des Skeletts. Thieme, Stuttgart New YorkGoogle Scholar
  2. 2.
    Adler CP (1986) The role of bone biopsy in metabolic bone disease. In: Current Concepts of Bone Fragility. Springer, Berlin Heidelberg New York, S 111–122CrossRefGoogle Scholar
  3. 3.
    Adler CP, Krause W, Gebert G (1992) Knochen & Gelenke. In: Thomas C. (Hrsg) Grundlagen der klinischen Medizin. Schattauer, Stuttgart New YorkGoogle Scholar
  4. 4.
    Arien M, Higinbotham NW, Huvos AG (1971) Radiation-induced sarcoma of bone. Cancer 28:1087Google Scholar
  5. 5.
    Audran M, Basle MF (1991) Cortisone-induced osteoporosis: from physiopathology to treatment. Rev Med Interne 12: 458–459PubMedCrossRefGoogle Scholar
  6. 6.
    Bickel WH, Childs DS, Porretta CM (1961) Post-irradiation fractures of the neck. Emphasis on the results of treatment. JAMA 175:204CrossRefGoogle Scholar
  7. 7.
    Bradbeer JN, Zanelli JM, Lindsay PC, Pearson J, Reeve J (1992) Relationship between the location of osteoblastic alkaline phosphatase activity and bone formation in human iliac crest bone. J Bone Miner Res 7: 905–912PubMedCrossRefGoogle Scholar
  8. 8.
    Bremen-Kühnev R (1992) Periartikuläre Ossifikationen nach totalendoprothetischem Hüftgelenksersatz und ihre Therapie. Inauguraldis, FreiburgGoogle Scholar
  9. 9.
    Catto M (1976) Pathology of aseptic necrosis. In: Davidson JK (Hrsg) Aseptic Necrosis of Bone. Excerpta Medica, Amsterdam, S 3Google Scholar
  10. 10.
    Chaplin H jr, Clark LD, Ropes MW (1951) Vitamin D intoxication. Am J Med Sci 221:369PubMedCrossRefGoogle Scholar
  11. 11.
    Christensen WR, Liebman C, Sosman MC (1951) Skeletal and periarticular manifestations of hypervitaminosis D. Am J Roentgenol 65:27Google Scholar
  12. 12.
    Dalen N, Edsmyr F (1974) Bone mineral content of the femoral neck after irradiation. Acta Radiol Ther 13:97Google Scholar
  13. 13.
    Fechner RE (1982) Bone and Joints. In: Riddell RH (Hrsg) Pathology of Drug-Induced and Toxic Diseases. Churchill Livingstone, New York Edinburgh London Melbourne, S 71–85Google Scholar
  14. 14.
    Fitton A, McTavish D (1991) A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 41: 289–318PubMedCrossRefGoogle Scholar
  15. 15.
    Fleisch H (1991) Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 42: 919–944PubMedCrossRefGoogle Scholar
  16. 16.
    Frame B, Guiang HL, Frost HM (1971) Osteomalacia induced by laxative (phenol-phthalein) ingestion. Arch Int Med 128:794CrossRefGoogle Scholar
  17. 17.
    Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR (1991) Tetracy-clines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med 2: 297–321PubMedGoogle Scholar
  18. 18.
    Greenwald RA, Moak SA, Ramamurthy NS, Golub LM (1992) Tetracyclines suppress matrix metalloproteinase activity in adjuvant arthritis and in combination with flurbi-profen, ameliorate bone damage. J Rheumatol 19: 927–938PubMedGoogle Scholar
  19. 19.
    Grennan DM, Palmer DG, Malthus RS (1978) Iatrogenic fluorosis. Aust New Z J Med 8:528CrossRefGoogle Scholar
  20. 20.
    Griffith CG, Nichols G jr, Asher JD (1965) Heparin osteoporosis. JAMA 193:91CrossRefGoogle Scholar
  21. 21.
    Hahn TJ (1975) Anticonvulsant osteomalacia. Arch Intern Med 135:997CrossRefGoogle Scholar
  22. 22.
    Hasselbacher P, Schlimmer BM, Weinberger A (1978) Hemarthrosis with sodium warfarin and heparin. Arth Rheum 21:740CrossRefGoogle Scholar
  23. 23.
    Heaton KW, Lever JV, Barnard D (1972) Osteomalacia associated with cholestyramine therapy for postileectomy diarrhea. Gastroenterology 62:642PubMedGoogle Scholar
  24. 24.
    Hoskin DJ (1990) Advances in the management of Paget’s disease of bone. Drugs 40: 829–840CrossRefGoogle Scholar
  25. 25.
    Howland WJ, Loeffler RK, Starchman DE (1975) Postirradiation and atrophic changes of bone and related complications. Radiologe 117:677Google Scholar
  26. 26.
    Inkovaara JA (1991) Is fluoride treatment justified today-Calcif Tissue Int 49 Suppl: 68–6Google Scholar
  27. 27.
    Jowsey J, Riggs BL (1970) Bone formation in hypercortisonism. Acta Endocrinol 63:21Google Scholar
  28. 28.
    Jowsey J, Riggs BL, Kelly PJ (1972) Effect of combined therapy with sodium fluoride, vitamin D and calcium in osteoporosis. Am J Med 53:43CrossRefGoogle Scholar
  29. 29.
    Kuntz D (1992) Treatment of common osteoporosis with fluoride: current trends. Rev Rhum Mal Osteoartic 59: 39–45PubMedGoogle Scholar
  30. 30.
    Lifshitz F, Maclaren N (1973) Vitamin D dependent ricketts in institutionalized mentally retarded children on long term anticonvulsant therapy. I. A survey of 288 patients. J Pediatr 83:612Google Scholar
  31. 31.
    Lindsay R (1992) The effect of sex steroids on the skeleton in premenopausal women. Am J Obstet Gynecol 166: 1993–1996PubMedGoogle Scholar
  32. 32.
    Main J, Ward MK (1992) Lesson on the week: Potentiation of aluminium absorption by effervescent analgesic tablets in haemodialysis patient. BMJ 304:1686CrossRefGoogle Scholar
  33. 33.
    McLaughlin GE, McCarty DJ jr, Segal BL (1966) Hemarthrosis complicating anticoagulant therapy. Report of three cases. JAMA 196:1020Google Scholar
  34. 34.
    Miller WE, De Wolfe VG (1966) Osteoporosis resulting from heparin therapy. Cleve Clin Q 33:31Google Scholar
  35. 35.
    Mimura K (1985) Treatment of Paget’s disease of bone. Nippon Scikeigeka Gakkai Zasshi 59:751–761Google Scholar
  36. 36.
    Miossec P (1991) Interleukin-1 and other proinflammatory cytokines. Pediatrie 46: 135–139PubMedGoogle Scholar
  37. 37.
    Obrist R, Hartmann D, Obrecht JP (1978) Osteonecrosis after chemotherapy. Lancet 1:1316PubMedCrossRefGoogle Scholar
  38. 38.
    Ragab AH, Freeh RS, Vietti TJ (1970) Osteoporotic fractures secondary to methotrexate therapy of acute leukemia in remission. Cancer 25:580PubMedCrossRefGoogle Scholar
  39. 39.
    Sabanas AO, Dahlin DC, Childs DS jr (1956) Postradiation sarcomas of bone. Cancer 9:528PubMedCrossRefGoogle Scholar
  40. 40.
    Sackler JP, Liu L (1973) Heparin-induced osteoporosis. Br J Radiol 46:548PubMedCrossRefGoogle Scholar
  41. 41.
    Schuster J (1975) Die Metallose. In: Maurer G (Hrsg) Praktische Chirurgie 90. Enke, StuttgartGoogle Scholar
  42. 42.
    Sindelar WF, Costa J, Ketcham AS (1978) Osteosarcoma associated with Thorotrast administration. Report of two cases and literature review. Cancer 42:2604PubMedCrossRefGoogle Scholar
  43. 43.
    Stea S, Savarino L, Toni A, Sudanese A, Giunti A, Pizzoferrato A (1992) Microradiogra-phic and histochemical evaluation of mineralization inhibition at the bone-adlumina interface. Biomaterials 13: 664–667PubMedCrossRefGoogle Scholar
  44. 44.
    Stern PJ, Watts HG (1979) Osteonecrosis after renal transplantation in children. J Bone Joint Surg 61-A:851Google Scholar
  45. 45.
    Stolfi RL, Martin DS (1991) Enhancement of anticancer agent activity by selective inhibition of rapidly proliferating tissues of the host. Pharmacol Ther 49: 43–54PubMedCrossRefGoogle Scholar
  46. 46.
    Susan LP, Braun WE, Banowsky LH (1978) A vascular necrosis following renal transplantation. Experience with 449 allografts with and without high-dose steroid therapy. Urology 11:225Google Scholar
  47. 47.
    Teplick JG, Head GL, Kricum ME (1978) Ghost infantile vertebrae and hemi-pelves within adult skeleton from Thorotrast administration in childhood. Radiologe 129:657Google Scholar
  48. 48.
    Thomas BJ (1992) Heterotopic bone formation after total hip arthroplasty. Orthop Clin North Am 23: 347–358PubMedGoogle Scholar
  49. 49.
    Timothy AR, Tucker AK, Malpas JS (1978) Osteonecrosis after intensive chemotherapy for Hodgkin’s disease. Lancet 1:154PubMedCrossRefGoogle Scholar
  50. 50.
    Wenz W, Basier L (1985) Significance of X-ray diagnosis in the control of calcitonin therapy of Paget’s disease: case report. Radiologe 25: 594–596PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • C. P. Adler
    • 1
  • H. E. Schaefer
    • 1
  1. 1.Pathologisches InstitutUniversität FreiburgFreiburg i.Br.Deutschland

Personalised recommendations