Theoretical and Practical Aspects of Supercritical Fluid Extraction

  • Maria Dolores Luque de Castro
  • Miguel Valcárcel
  • Maria Teresa Tena


In Chap. 1, leaching was defined as a solid-liquid separation process whereby the analytes of interest in a solid sample are extracted by means of a condensed liquid or supercritical fluid, whether organic or inorganic. The most salient properties and functions of supercritical fluids were described in Chap. 2. This Chapter is devoted to describing in a broad sense the theoretical and practical aspects of supercritical fluid (SF) leaching (extraction). In this context, the purity and affordability of SFs typically used in analytical applications are discussed first. Next, two essential elements that are central to the extraction process are examined, viz. analyte dissolution and transport phenomena, in terms of both the way they are influenced by various experimental factors and the physicochemical parameters usually employed to characterize them. Finally, factors affecting supercritical leaching are reviewed in groups according to whether they influence the supercritical fluid, the solid sample, the solute- analyte, the working conditions or modifier systems (with or without derivatization). A more detailed description of the development and applications of supercritical fluids for analytical purposes is provided in Chap. 4, devoted to extractors and operational modes, and Chap. 5 is concerned with the features and applications of SFE.


Benzoic Acid Extraction Efficiency Supercritical Fluid American Chemical Society Practical Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hawthorne SB, Langenfeld JJ, Miller DJ, Burford MD (1992) Anal. Chem. 64:1614CrossRefGoogle Scholar
  2. 2.
    Nielen MWF, Sanderson JT, Frei RW, Brinkman UATh (1989) J. Chromatogr. 474:388CrossRefGoogle Scholar
  3. 3.
    Houben RJ, Janssen HGM, Leclercq PA, Rijks JA, Cramers CA (1990) J. High Resol. Chromatogr. 13:669CrossRefGoogle Scholar
  4. 4.
    Wallace JC, Krieger MS, Hites RA (1992) Anal. Chem. 64:2655CrossRefGoogle Scholar
  5. 5.
    Johnston KP, Eckert CA (1981) AlChE J. 27:773CrossRefGoogle Scholar
  6. 6.
    Chrastil J (1982) J. Phys. Chem. 86:3016CrossRefGoogle Scholar
  7. 7.
    Sadek PC, Carr PW, Doherty RM, Kamlet MJ, Taft RW, Abraham MH (1985) Anal. Chem. 57:2971CrossRefGoogle Scholar
  8. 8.
    McHugh MA, Seckner AJ, Yogan TJ (1984) Ind. Eng. Chem. Fundam. 23:493CrossRefGoogle Scholar
  9. 9.
    Kurnik RT, Holla SJ, Reid RC (1981) J. Chem. Eng. Data 26:47CrossRefGoogle Scholar
  10. 10.
    Kurnik RT, Reid RC (1982) Fluid Phase Equilib. 8:93CrossRefGoogle Scholar
  11. 11.
    Schafer K, Baumann W (1988) Fresenius Z. Anal. Chem. 332:122CrossRefGoogle Scholar
  12. 12.
    Maxwell RJ, Hampson JW, Cygnarowicz-Provost M (1991) LC-GC 9:789Google Scholar
  13. 13.
    Larson KA, King ML (1986) Biotechnol. Prog. 2:73CrossRefGoogle Scholar
  14. 14.
    Mitra S, Chen JW, Viswanath DS (1988) J. Chem. Eng. Data 33:35CrossRefGoogle Scholar
  15. 15.
    Banberger T, Erickson JC, Cooney CL, Kumar SK (1988) J. Chem. Eng. Data 33:327CrossRefGoogle Scholar
  16. 16.
    van Leer RA, Paulaitis ME (1980) J. Chem. Eng. Data 25:257CrossRefGoogle Scholar
  17. 17.
    McHugh M, Paulaitis ME (1980) J. Chem. Eng. Data 25:326CrossRefGoogle Scholar
  18. 18.
    Johnston KP, Ziger DH, Eckert CA (1982) Ind. Eng. Chem. Fundam. 21:191CrossRefGoogle Scholar
  19. 19.
    Dobbs JM, Wong JM, Lahiere RJ, Johnston KP (1987) Ind. Eng. Chem. Res. 26:56CrossRefGoogle Scholar
  20. 20.
    Dobbs JM, Johnston KP (1987) Ind. Eng. Chem. Res. 26:1476CrossRefGoogle Scholar
  21. 21.
    Kim S, Johnston KP (1987) AlChE J. 33:1603CrossRefGoogle Scholar
  22. 22.
    Dandge DK, Heller JP, Wilson KV (1985) Ind. Eng. Chem. Prod. Res. Dev. 24:162CrossRefGoogle Scholar
  23. 23.
    Francis AW (1954) J. Phys. Chem. 58:1099CrossRefGoogle Scholar
  24. 24.
    Hildebrandt JH, Scott RL (1950) The solubility of non-electrolytes, 3rd edn. Reinhold, New YorkGoogle Scholar
  25. 25.
    Giddings JC, Meyers MN, McLaren L, Keller RA (1968) Science 162:67CrossRefGoogle Scholar
  26. 26.
    Barton AFM (1983) CRC Handbook of solubility parameters and other cohesional parameters. CRC, Boca Raton, FloridaGoogle Scholar
  27. 27.
    King JW, Friedrich JP (1990) J. Chromatogr. 517:449CrossRefGoogle Scholar
  28. 28.
    Ikushima Y, Goto T, Arai M (1987) Bull. Chem. Soc. Jpn. 60:4145CrossRefGoogle Scholar
  29. 29.
    Peng DY, Robinson DB (1976) Ind. Eng. Chem. Fundam. 15:59CrossRefGoogle Scholar
  30. 30.
    Walsh JM, Ikonomou GD, Donohue MD (1987) Fluid Phase Equilib. 33:295CrossRefGoogle Scholar
  31. 31.
    van Aisten JG, Hansen PC, Eckert CA (1984) Supercritical enhancement factors for nonpolar and polar systems. AlChE Annual Meeting, San FranciscoGoogle Scholar
  32. 32.
    Schmitt WJ, Reid RC (1986) Fluid Phase Equilib. 32:77CrossRefGoogle Scholar
  33. 33.
    Brunner G (1983) Fluid Phase Equilib. 10:289CrossRefGoogle Scholar
  34. 34.
    Alexandrou N, Pawliszyn J (1989) Anal. Chem. 61:2770CrossRefGoogle Scholar
  35. 35.
    Bartle KD, Clifford AA, Hawthorne SB, Langenfeld JJ, Miller DJ, Robinson R (1990) J. Supererit. Fluids 3:143CrossRefGoogle Scholar
  36. 36.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Charendon, Oxford, 233Google Scholar
  37. 37.
    Crank J (1975) The mathematics of diffusion. Clarendon, Oxford, 89Google Scholar
  38. 38.
    Bartle KD, Boddington T, Clifford AA, Cotton NJ, Dowle CJ (1991) Anal. Chem. 63:2371CrossRefGoogle Scholar
  39. 39.
    Campbell E (1992) Optimization of operating parameters used in supercritical fluid extraction. Pittcon’92, New OrleansGoogle Scholar
  40. 40.
    Otero Keil Z (1992) Optimization of SFE by statistical methods. Pittcon’92, New OrleansGoogle Scholar
  41. 41.
    Lopez Avila V, Dodhiwala NS, Beckert WF (1990) J. Chromatogr. Sci. 28:468Google Scholar
  42. 42.
    Tena MT, Luque de Castro MD, Valcarcel M (1993) Lab. Rob. Autom. 5:255Google Scholar
  43. 43.
    Dolata LA, Levy JM, Rosselli AC, Ravey RM (1992) Making SFE Work for environmental applications. Pittcon’92, New OrleansGoogle Scholar
  44. 44.
    Ong CP, Ong HM, Li SFY, Lee HK (1990) J. Microcol. Sep. 2:69CrossRefGoogle Scholar
  45. 45.
    McNally ME, Wheeler JR (1988) J. Chromatogr. 447:53CrossRefGoogle Scholar
  46. 46.
    Hunt TP, Dowle CJ, Greenway G (1991) Analyst 116:1299CrossRefGoogle Scholar
  47. 47.
    Hawthorne SB (1990) Anal. Chem. 62:633ACrossRefGoogle Scholar
  48. 48.
    Li SFY, Ong CP, Lee ML, Lee HK (1990) J. Chromatogr. 515:515CrossRefGoogle Scholar
  49. 49.
    David F, Verschuere M, Sandra P (1992) Fresenius J. Anal. Chem. 344:479CrossRefGoogle Scholar
  50. 50.
    Louie PKK, Timpe RC, Hawthorne SB, Miller DJ (1992) Determination of elemental and organic sulfur in coal using supercritical fluid extraction (SFE) and pyrolysis/SFE. Pittcon’92, New OrleansGoogle Scholar
  51. 51.
    Schmidt S, Blomberg L, Wannman T (1989) Chromatographia 28:400CrossRefGoogle Scholar
  52. 52.
    Yang J, Colvin BA, Bonanno AS, Griffiths PR (1992) SFE/SFC/FT-IR Identification of compounds in and on polymeric matrices. Pittcon’92, New OrleansGoogle Scholar
  53. 53.
    Wuchner K, Ghijsen RT, Brinkman UATh, Grob R, Mathieu J (1993) Analyst 118:11CrossRefGoogle Scholar
  54. 54.
    Thomson CA, Chesney DJ (1992) Anal. Chem. 64:848CrossRefGoogle Scholar
  55. 55.
    King JW (1989) J. Chromatogr. Sci. 27:355Google Scholar
  56. 56.
    Sandra P, private communicationGoogle Scholar
  57. 57.
    Ikushima Y, Saito N, Goto T (1989) Ind. Eng. Chem. Res. 28:1364CrossRefGoogle Scholar
  58. 58.
    Ikushima Y, Hatakeda K, Ito S, Saito N, Asano T, Goto T (1988) Ind. Eng. Chem. Res. 27:818CrossRefGoogle Scholar
  59. 59.
    Levy JM, Rosselli AC, Khorassani MA, Dolata LA, Storozynsky E, Boyer DS, Ravey RM (1992) Modifiers: the ultimate answer in SFE. Pittcon’92, New OrleansGoogle Scholar
  60. 60.
    Andersen MR, Swanson JT, Porter NL, Richter BE (1989) J. Chromatogr. Sci. 27:371CrossRefGoogle Scholar
  61. 61.
    Dooley KM, Kao CP, Gambrell RP, Knopf FC (1987) Ind. Eng. Chem. Res. 26:2058CrossRefGoogle Scholar
  62. 62.
    Schafer K, Baumann W (1989) Fresenius Z. Anal. Chem. 332:884CrossRefGoogle Scholar
  63. 63.
    Hewlett Packard Application no. 228–154Google Scholar
  64. 64.
    Wheeler JR, McNally ME (1989) J. Chromatogr. Sci. 27:534Google Scholar
  65. 65.
    Hewlett Packard Application no. 228–117Google Scholar
  66. 66.
    Damian J, Myer L, Liescheski P, Tehrani J (1992) Supercritical fluid extraction of organic analytes from aqueous media and wet matrices. Pittcon’92, New OrleansGoogle Scholar
  67. 67.
    Johansen HR, Becher G, Greibrokk T (1992) Fresenius J. Anal. Chem. 344:486CrossRefGoogle Scholar
  68. 68.
    Hills JW, Hill HH Jr, Maeda T (1991) Anal. Chem. 63:2152CrossRefGoogle Scholar
  69. 69.
    Hawthorne SB, Miller DJ, Nivens DE, White DC (1992) Anal. Chem. 64:405CrossRefGoogle Scholar
  70. 70.
    King JW, France JE, Snyder JM (1992) Fresenius J. Anal. Chem. 344:474CrossRefGoogle Scholar
  71. 71.
    Küppers S (1992) Chromatographia 33:434CrossRefGoogle Scholar
  72. 72.
    Liu H, Cooper LM, Raynie DE, Pinkston JD, Wehmeyer KR (1992) Anal. Chem. 64:802CrossRefGoogle Scholar
  73. 73.
    Westwood SA (ed.) (1993) Supercritical fluid extraction and its use in chromatographic sample preparation. Blackie Academic & Professional, LondonGoogle Scholar
  74. 74.
    Hewlett Packard, Application no. 228–145Google Scholar
  75. 75.
    Burford MD, Langenfeld JJ, Hawthorne SB, Miller DJ (1992) Effect of extraction cell shape, flow rate and solvent collection parameters on supercritical fluid extraction (SFE) efficiencies. Pittcon’92, New OrleansGoogle Scholar
  76. 76.
    Furton KG, Lin Q (1992) Chromatographia 34:185CrossRefGoogle Scholar
  77. 77.
    Furton KG, Rein J (1991) Chromatographia 31:297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Maria Dolores Luque de Castro
    • 1
  • Miguel Valcárcel
    • 1
  • Maria Teresa Tena
    • 1
  1. 1.Department of Analytical ChemistryUniversity of CordobaCordobaSpain

Personalised recommendations