Advertisement

Anämien aufgrund von Störungen der Hämoglobinsynthese und -struktur

  • A. Pekrun
  • W Schröter

Zusammenfassung

Anämien aufgrund einer anomalen Hämoglobinzusammensetzung gehören zu den häufigsten genetisch bedingten Erkrankungen. Es wird zwischen zwei prinzipiell unterschiedlichen Störungen unterschieden:
  • Synthese eines strukturell anomalen Hämoglobins, das aufgrund abnormaler physikalisch-chemischer Eigenschaften zur gesteigerten Hämolyse führt: Die häufigsten Krankheitsbilder sind die Sichelzellänamie und die hämolytischen Anämien als Folge von instabilen Hämoglobinen.

  • Verminderte Synthese bestimmter Aminosäureketten des normalen Hämoglobins: Die Imbalance der Aminosäureketten führt sowohl zu einer Hämoglobin verminderung als auch zu einer Veränderung der Hämoglobinzusammensetzung. Die wichtigsten Erkrankungen dieses Formenkreises sind die α- und β-Thalassämien mit einer verminderten Synthese der α- bzw. der β-Ketten des Hämoglobins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ananullah A, Rucknagel DL, Ferruci SJ (1982) Cord blood screening for hemoglobin disorders by high performance liquid chromatography. Anal Biochem 123:402–405CrossRefGoogle Scholar
  2. 2.
    Asakura T, Meyberry J (1984) Relationship between morphologic characterization of sickle cells and method of deoxygenation. J Lab Clin Med 104:987–994PubMedGoogle Scholar
  3. 3.
    Asakura T, Segal ME, Friedman S, Schwartz E (1980) A rapid test for sickle hemoglobin. JAMA 233:156–158CrossRefGoogle Scholar
  4. 4.
    Asakura T, Adachi K, Schwartz E (1978) Stabilizing effect of various organic solvents on proteins. J Biol Chem 253:6423–6425PubMedGoogle Scholar
  5. 5.
    Betke K, Marti HR, Schlicht J (1959) Estimation of small percentages of foetal haemoglobin. Nature 184:1877–1879PubMedCrossRefGoogle Scholar
  6. 6.
    Betke K, Schlaich P, Huidobro-Tech G (1959) Blutfarbstoffuntersuchung mit der Stärkeblock-elektrophorese. Klin Wschr 37 (15):794–798PubMedCrossRefGoogle Scholar
  7. 7.
    Beutler E, Dern RJ, Alvings AS (1955) The hemolytic effect of primaquine. J Lab Clin Med 45:40–50PubMedGoogle Scholar
  8. 8.
    Carrel RW, Kay R (1972) A simple method for the detection of unstable hemoglobins. Br J Haematol 23:615–619CrossRefGoogle Scholar
  9. 9.
    da Silva EM (1948) Absence of the sickling phenomenon of the red blood corpuscles among Brasilian Indians. Science 107:221–223CrossRefGoogle Scholar
  10. 10.
    Daland GA, Castle WB (1948) A simple and rapid method for demonstrating sickling of the red blood cells: the use of reducing agents. J Lab Clin Med 33:1082–1084PubMedGoogle Scholar
  11. 11.
    Efremov GD, Huisman THJ, Bowman K (1974) Microchromatography of hemoglobins: A rapid method for the determination of hemoglobin A2. J Lab Clin Med 83:657–664PubMedGoogle Scholar
  12. 12.
    Fessas P (1963) Inclusions of hemoglobin in erythroblasts and erythrocytes of thalassemia. Blood 21:21–23PubMedGoogle Scholar
  13. 13.
    Greenberg MS, Harvey HA, Morgan C (1972) A simple and inexpensive screening test for sickle hemoglobin. N Engl J Med 286:1143–1144PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta SP, Hamash SM (1983) Separation of hemoglobin types by cation exchange high performance liquid chromatography. Anal Biochem 134:117–121PubMedCrossRefGoogle Scholar
  15. 15.
    Hicks EJ, Grieb JA, Nordschow CD (1973) Comparison of results for three methods of hemoglobin S identification. Clin Chem 19:533–535Google Scholar
  16. 16.
    Huisman THJ, Jonxis JHP (1977) The hemoglobinopathies: techniques of identification. Decker, New YorkGoogle Scholar
  17. 17.
    Ingram VM (1957) Gene mutations in human hemoglobin: the chemical difference between normal and sickle cell hemoglobin. Nature 180:326–327PubMedCrossRefGoogle Scholar
  18. 18.
    International Committee for Standardization in Haematology (1979) Recommendation for fetal haemoglobin reference preparation and fetal haemoglobin determination by the alkali denaturation method. Br J Haematol 42:133–136CrossRefGoogle Scholar
  19. 19.
    Itano HA (1953) Solubilities of naturally occurring mixtures of human hemoglobins. Arch Biochem Biophys 47:148–152PubMedCrossRefGoogle Scholar
  20. 20.
    Jeppson JO, Berglund S (1972) Thin-layer isoelectric focusing for haemoglobin screening and its application to haemoglobin Malmö. Clin Chim Acta 40:153–158CrossRefGoogle Scholar
  21. 21.
    Josephson AM, Masri MS, Singer L, Dworkin D, Singer K (1958) Starch block electrophoresis studies of human hemoglobin solutions. Blood 13:543–551PubMedGoogle Scholar
  22. 22.
    Kim HC, Friedman S, Asakura T, Schwartz E (1980) Inclusions in red blood cells containing hemoglobin S or hemoglobin C. Br J Haematol 44:547–554PubMedCrossRefGoogle Scholar
  23. 23.
    Kleihauer E, Braun H, Betke K (1957) Demonstration von fetalem Hämoglobin in den Erythrozyten eines Blutausstrichs. Klin Wschr 12:637–638CrossRefGoogle Scholar
  24. 24.
    Marengo-Rowe RJ (1965) Rapid electrophoresis and quantitation of hemoglobins on celluloseacetate. J Lab Clin Pathol 18:790–793CrossRefGoogle Scholar
  25. 25.
    Milner PF, Gooden H (1975) Rapid citrate agar electrophoresis in routine screening for hemoglobinopathies using a single hemolysate. Am J Clin Pathol 64:58–64PubMedGoogle Scholar
  26. 26.
    Molden DP, Alexander DM, Neeley WE (1982) Fetal hemoglobin: optimum conditions for its estimation by alkali denaturation. Am J Clin Pathol 77:568–572PubMedGoogle Scholar
  27. 27.
    Pembrey ME, McWade P, Weatherall DJ (1972) Reliable routine estimation of small amounts of foetal haemoglobin by alkali denaturation. J Clin Pathol 25:738–740PubMedCrossRefGoogle Scholar
  28. 28.
    Rigas DA, Kohler RD (1961) Decreased erythrocyte survival in hemoglobin H disease as a result of the abnormal properties of hemoglobin H: the benefit of splenectomy. Blood 18:1–17PubMedGoogle Scholar
  29. 29.
    Schmidt RM, Brosious EM (1978) Basic laboratory methods of hemoglobinopathy detection, 7th ed CDC-publishers, AtlantaGoogle Scholar
  30. 30.
    Schmidt RM, Holland S (1974) Standardization in abnormal hemoglobin detection: an evaluation of hemoglobin electrophoresis kits. Clin Chem 20:591–593PubMedGoogle Scholar
  31. 31.
    Schmidt RM, Rucknagel DL, Necheles TF (1975) Comparison of methodologies for thalassemia screening by Hb A2 quantitation. J Lab Clin Med 86:873–882PubMedGoogle Scholar
  32. 32.
    Schmidt RM, Wilson SM (1973) Standardization in detection of abnormal hemoglobins. Solubility tests for hemoglobin S. JAMA 225:1225–1227PubMedCrossRefGoogle Scholar
  33. 33.
    Schneider RG, Barwick RC (1987) Measuring relative electrophoretic mobilities of mutant hemoglobins and globin chains. Hemoglobin 2:417–419CrossRefGoogle Scholar
  34. 34.
    Schneiderman LJ, Jung JG, Fawley DE (1970) Effect of phosphate and nonphosphate buffers on thermolability of unstable hemoglobins. Nature 225:1041–1043PubMedCrossRefGoogle Scholar
  35. 35.
    Smithies O (1959) An improved procedure for starch gel electrophoresis: further variations in the serum protein of normal individuals. Biochem J 71:585–587PubMedGoogle Scholar
  36. 36.
    Wasi P, Disthasongchan P, Na-Nakoru S (1968) The effect of iron deficiency on the levels of hemoglobins A2 and E. J Lab Clin Med 71:85–91PubMedGoogle Scholar
  37. 37.
    Wehinger H, Alebouyeh M (1970) Densitometrisch-quantitative Bestimmung von Hämoglobin A2 nach Mikrozonen-Elektrophorese auf Cellulose-Azetat-Folie. Klin Wschr 48:701–703PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • A. Pekrun
  • W Schröter

There are no affiliations available

Personalised recommendations