Advertisement

Erythrozytenenzymdefekte als Ursache angeborener hämolytischer Anämien

  • A. Pekrun
  • W. Schröter

Zusammenfassung

Defekte der Erythrozytenenzyme sind in Mitteleuropa nach den Membrandefekten die häufigste Ursache angeborener hämolytischer Anämien [32]. Der Erythrozyt besitzt im Gegensatz zu den kernhaltigen Zellen keinen funktionsfähigen Proteinsynthese-Apparat. Der Mangel bzw. Defekt einzelner Enzyme des Erythrozytenstoffwechsels kann dementsprechend nicht durch eine gesteigerte Synthese des Proteins ausgeglichen werden. Enzymdefekte der für den Erythrozyten relevanten Stoffwechselwege können daher zu einer verkürzten Lebensdauer der Erythrozyten mit Entwicklung einer hämolytischen Anämie führen. Demgegenüber sind die übrigen Körperzellen durch diese Enzymdefekte, von wenigen Ausnahmen abgesehen, nicht betroffen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Arnold H, Blume KG, Busch D, Lenkeit U, Löhr GW, Luebs E (1970) Klinische und biochemische Untersuchungen zur Glucosephosphatisomerase normaler menschlicher Erythrozyten und bei Glucosephosphatisomerase-Mangel. Klin Wschr 48:1299–1308PubMedCrossRefGoogle Scholar
  2. 2.
    Beutler E, Forman L, Rios-Larrain E (1987) Elevated pyruvate kinase activity in patients with hemolytic anemia due to red cell pyruvate kinase deficiency. Am J Med 83:899–904PubMedCrossRefGoogle Scholar
  3. 3.
    Beutler E, West C, Blume KG (1976) The removal of leukocytes and platelets from whole blood. J Lab Clin Med 88:328–333PubMedGoogle Scholar
  4. 4.
    Blume KG, Arnold H, Löhr GW, Beutler E (1973) Additional diagnostic procedures for the detection of abnormal red cell pyruvate kinase. Clin Chim Acta 43:443–446PubMedCrossRefGoogle Scholar
  5. 5.
    Board PG (1981) NADH-ferricyanide reductase, a convenient approach to the evaluation of NADH-methaemoglobin reductase in human erythrocytes. Clin Chim Acta 109:233–237PubMedCrossRefGoogle Scholar
  6. 6.
    Bücher T, Luh W, Pette D (1964) Einfache und zusammengesetzte optische Tests mit Pyridin- Nukleotiden. In: Hoppe-Seyler F, Tierfelder H (Hrsg) Handbuch der physiologisch-chemischen und pathologisch-chemischen Analyse. Springer, Berlin-Heidelberg-New York, 291–339Google Scholar
  7. 7.
    Busch D, Pelz K (1966) Erythrozytenisolierung aus Blut mit Baumwolle. Klin Wschr 44:983–984PubMedCrossRefGoogle Scholar
  8. 8.
    Eber SW, Dunnwald M, Heinemann G, Hofstätter T, Weinmann HM, Belohradsky BH (1984) Prevalence of partial deficiency of red cell triosephosphate isomerase in Germany - a study of 3000 people. Hum Genet 67:336–339PubMedCrossRefGoogle Scholar
  9. 9.
    Eber SW, Gahr M, Lakomek M, Prindull G, Schroter W (1986) Clinical symptoms and biochemical properties of three new glucose phosphate isomerase variants. Blut 53:21–28PubMedCrossRefGoogle Scholar
  10. 10.
    Eber SW, Gahr M, Schröter W (1985) Glucose-6-phosphate dehydrogenase (G-6-PD) Iserlohn and G-6-PD Regensburg: two new severe enzyme defects in German families. Blut 51:109–115PubMedCrossRefGoogle Scholar
  11. 11.
    Eber SW, Pekrun A, Bardosi A, Gahr M, Krietsch WKG, Krüger J, Matthei R, Schröter W (1991) Triosephosphate isomerase deficiency: haemolytic anemia, myopathy with altered mitochondria and mental retardation due to a new variant with accelerated enzyme catabolism and diminished specific activity. Eur J Pediatr 150:761–766PubMedCrossRefGoogle Scholar
  12. 12.
    Etiemble J, Kahn A, Boivin P, Bernard JF, Goudemand M (1976) Hereditary hemolytic anemia with erythrocyte phosphofructokinase deficiency. Studies of some properties of erythrocyte and muscle enzyme. Hum Genet 31:83–86PubMedCrossRefGoogle Scholar
  13. 13.
    Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400Google Scholar
  14. 14.
    Fujii H, Krietsch WKG, Yoshida A (1980) A single amino acid substitution (Asp Asn) in a phosphoglycerokinase variant (PGK Miinchen) associated with enzyme deficiency. J Biol Chem 255:6421–6423PubMedGoogle Scholar
  15. 15.
    Galacteros F, Rosa R, Prehn MO (1984) Déficit en diphosphoglycérate mutase: Nouveaus cas associés à une polyglobulia. Nouv Rev Fr Hematol 26:69–74PubMedGoogle Scholar
  16. 16.
    International Committee for Standardization in Haematology (1977) Recommended methods for red cell enzyme analysis. Br J Haematol 35:331–340CrossRefGoogle Scholar
  17. 17.
    International Committee for Standardization in Haematology (1979) Recommended methods for the characterization of red cell pyruvate kinase variants. Br J Haematol 43:275–286CrossRefGoogle Scholar
  18. 18.
    International Committee for Standardization in Haematology (1989) Recommended methods for an additional red cell enzyme (pyrimidine 5′-nucleotidase) and the determination of red cell adenosine 5′-triphosphate, 2.3-diphosphoglycerate and reduced glutathione. Clin Lab Haemat 11:131–138CrossRefGoogle Scholar
  19. 19.
    International Committee for Standardization in Haematology (1989) Recommended screening test for pyrimidine-5′-nucleotidase deficiency. Clin Lab Haemat 11:55–56CrossRefGoogle Scholar
  20. 20.
    Kishi K, Mukai T, Hirono A, Fujii H, Miwa S, Hori K (1987) Human aldolase deficiency associated with hemolytic anemia: thermolabile aldolase due to a single base mutation. Proc Natl Acad Sci 84:8623–8627PubMedCrossRefGoogle Scholar
  21. 21.
    Koutras G, Hattori M, Schneider AS, Ebaugh FG, Valentine WN (1964) Studies on chromated erythrocytes: effect of sodium chromate on erythrocyte glutathione reductase. J Clin Invest 43:323–331PubMedCrossRefGoogle Scholar
  22. 22.
    Kraus AP, Langston MF, Lynch BL (1968) Red cell glycerokinase deficiency. A new case of nonspherocytic anemia. Biochem Biophys Res Commun 30:173—176PubMedCrossRefGoogle Scholar
  23. 23.
    Lakomek M, Neubauer BA, Lühe A, Hoch G, Winkler H, Schröter W (1992) Erythrocyte pyruvate kinase deficiency: relations of residual enzyme activity, altered regulation of defective enzymes and concentrations of high energy phosphates with the severity of clinical manifestation. Eur J Hematol 49:82–92CrossRefGoogle Scholar
  24. 24.
    Lakomek M, Schröter W, de Maeyer G, Winkler H (1989) On the diagnosis of erythrocyte enzyme defects in the presence of high reticulocyte counts. Br J Haematol 72:445–451PubMedCrossRefGoogle Scholar
  25. 25.
    Loos H, Roos D, Weening R, Houwerzijl J (1976) Familial deficiency of glutathione reductase in human red blood cells. Blood 48:53–62PubMedGoogle Scholar
  26. 26.
    Miwa S, Fujii H, Tano K, Takahashi K, Takegawa S, Fujinami N, Sakurai M, Kubo M, Tanimoto Y, Kato T, Matsumoto N (1981) Two cases of red cell aldolase deficiency associated with hereditary hemolytic anemia in a Japanese family. Am J Hematol 11:425–437PubMedCrossRefGoogle Scholar
  27. 27.
    Parr CW, Fitch LJ (1967) Inherited quantitative variations of human phosphogluconate dehydrogenase. Ann Hum Genet 30:339–344PubMedCrossRefGoogle Scholar
  28. 28.
    Pekrun A, Eber SW, Schröter W (1989) G-6-PD Avenches and G-6-PD Moosburg: biochemical and erythrocyte membrane characterization. Blut 58:11–14PubMedCrossRefGoogle Scholar
  29. 29.
    Rijksen G, Akkerman JVN, van den Wall Bake AWL (1983) Generalized hexokinase deficiency in the blood cells of a patient with nonspherocytic hemolytic anemia. Blood 61:12–18PubMedGoogle Scholar
  30. 30.
    Rosa R, Prehn MO, Beuzard Y, Rosa J (1978) The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes. J Clin Invest 62:907–910PubMedCrossRefGoogle Scholar
  31. 31.
    Schneider AS, Valentine WN, Hattori M, Heins HL (1965) Hereditary hemolytic anemia with triosephosphate isomerase deficiency. N Engl J Med 272:229–235PubMedCrossRefGoogle Scholar
  32. 32.
    Schröter W (1981) Enzymdefekte der Erythrozyten und ihre Bedeutung für die Klinik. Monatsschr Kinderheilkd 129:432–443PubMedGoogle Scholar
  33. 33.
    Skala H, Dreyfus JC, Vives-Corrons JH, Matsumoto F, Beutler E (1977) Triosephosphate isomerase deficiency. Biochem Med 18:226–234PubMedCrossRefGoogle Scholar
  34. 34.
    Svirklys LG, Lee CS, O’Sullivan WJ (1986) Phosphoglycerate kinase: studies on normal and a mutant enzyme. J Inherited Metab Dis 9:374–377PubMedCrossRefGoogle Scholar
  35. 35.
    Tarui S, Kono N, Nasu T, Nishikawa M (1969) Enzymatic basis for the coexistence of myopathy and hemolytic disease in inherited muscle phosphofructokinase deficiency. Biochem Biophys Res Commun 34:77–82PubMedCrossRefGoogle Scholar
  36. 36.
    Torrance J, West C, Beutler E (1977) A simple rapid radiometric assay for pyrimidine-5′- nucleotidase. J Lab Clin Med 90:563–568PubMedGoogle Scholar
  37. 37.
    Valentine WN, Fink K, Paglia DE, Harris SR, Adams WS (1974) Hereditary hemolytic anemia with human erythrocyte pyrimidine-5′-nucleotidase. J Clin Invest 54:866–879PubMedCrossRefGoogle Scholar
  38. 38.
    Vora S, Corash L, Engel WK, Durham S, Seaman C, Piomelli S (1980) The molecular mechanism of the inherited phosphofructokinase deficiency associated with hemolysis and myopathy. Blood 55:629–635PubMedGoogle Scholar
  39. 39.
    World Health Organization (1967) Standardization of procedures for the study of glucosesphosphate dehydrogenase. WHO Tech Rep Ser No 366Google Scholar
  40. 40.
    Yoshida A (1973) Hemolytic anemia and G-6-PD deficiency. Science 179:532–534PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • A. Pekrun
  • W. Schröter

There are no affiliations available

Personalised recommendations