Supercoiling Induced by Transcription

  • D. N. Cook
  • D. Ma
  • J. E. Hearst
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 8)

Abstract

The biological implications of supercoiling by transcription are potentially significant (Pruss and Drlica 1989; Lilley and Higgins 1991), and a fundamental question is the extent to which transcription determines the level of DNA supercoiling in vivo. Transcription can induce supercoiling of the template by virtue of the topological relationship between DNA and elongating RNA polymerase (Liu and Wang 1987). In some models, transcription elongation requires that polymerase follows the helical screw of the DNA such that there one 360° rotation between the enzyme and DNA for each 10.5 bp transcribed (Gamper and Hearst 1982). Since RNA polymerase elongates at the rate of about 40 nucleotides/s, an efficiently anchored transcription complex should introduce approximately four negative super-turns upstream and four positive superturns downstream from an actively expressed gene each second. This would suggest extraordinarily fast rates of localized supercoiling after the onset of transcription. The goal of this chapter is to summarize and examine our understanding of the kinetics and mechanisms of supercoiling induced by transcription and to relate these insights to the mechanics of transcription elongation.

Keywords

Migration Torque Codon Polypeptide Posit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian M, Heggeler-Bordier B, Wahli W, Stasiak AZ, Stasiak A, Dubochet J (1990) Direct visualization of supercoiled DNA molecules in solution. EMBO J 9:4551–4554PubMedGoogle Scholar
  2. Borukhov S, Sagitov V, Goldfarb A (1993) Transcript cleavage factors from E. coli. Cell 72:459–466PubMedCrossRefGoogle Scholar
  3. Brill SJ, Sternglanz R (1988) Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell 54:403–411PubMedCrossRefGoogle Scholar
  4. Chen D, Bowater R, Dorman C, Lilley DMJ (1992) Activity of a plasmid-borne leu-500 promoter depends on the transcription and translation of an adjacent gene. Proc Natl Acad Sci USA 89:8784–8788PubMedCrossRefGoogle Scholar
  5. Cook DN, Ma D, Pon NG, Hearst JE (1992) Dynamics of DNA supercoiling by transcription in E. coli. Proc Natl Acad Sci USA 89:10603–10607PubMedCrossRefGoogle Scholar
  6. Dayn A, Malkhosyan S, Mirkin S (1992) Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res 20:5991–5997PubMedCrossRefGoogle Scholar
  7. Gamper HB, Hearst JE (1982) A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation, and ternary complexes. Cell 29:81–90PubMedCrossRefGoogle Scholar
  8. Gellert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910PubMedCrossRefGoogle Scholar
  9. Giaever GN, Wang JC (1988) Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55:849–856PubMedCrossRefGoogle Scholar
  10. Heggeler-Bordier B, Wahli W, Adrian M, Stasiak A, Dubochet J (1992) The apical localization of transcribing RNA polymerases on supercoiled DNA prevents their rotation around the template. EMBO J 11:667–672PubMedGoogle Scholar
  11. Kim RA, Wang JC (1989) A subthreshold level of DNA topoisomerases leads to the excision of yeast rDNA as extrachromosomal rings. Cell 57:975–985PubMedCrossRefGoogle Scholar
  12. Kirkegaard K, Wang JC (1981) Mapping the topography of DNA wrapped around gyrase by nucleolytic and chemical probing of complexes of unique DNA sequences. Cell 23:721–729PubMedCrossRefGoogle Scholar
  13. Kirkegaard K, Wang JC (1985) Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J Mol Biol 185:625–637PubMedCrossRefGoogle Scholar
  14. Koo H-S, Wu H-Y, Liu LF (1990) Effects of transcription and translation on gyrase-mediated DNA cleavage in Escherichia coli. J Biol Chem 265:12300–12305PubMedGoogle Scholar
  15. Krummel B, Chamberlin MJ (1992) Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. J Mol Biol 225:239–250PubMedCrossRefGoogle Scholar
  16. Lilley DMJ, Higgins CF (1991) Local DNA topology and gene expression: the case of the leu-500 promoter. Mol Microbiol 5:779–783PubMedCrossRefGoogle Scholar
  17. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027PubMedCrossRefGoogle Scholar
  18. Lockshon D, Morris DR (1983) Positively supercoiled plasmid DNA is produced by treatment of Escherichia coli with DNA gyrase inhibitors. Nucleic Acids Res 11:2999–3017PubMedCrossRefGoogle Scholar
  19. Lodge JK, Berg DE (1990) Mutations that affect Tn5 insertion in pBR322: importance of local DNA supercoiling. J Bacteriol 172:5956–5960PubMedGoogle Scholar
  20. Lodge JK, Kazic T, Berg DE (1989) Formation of supercoiling domains in plasmid pBR322. J Bacteriol 171:2181–2187PubMedGoogle Scholar
  21. Lynch AS, Wang JC (1993) Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 175:1645–1655PubMedGoogle Scholar
  22. Ostrander EA, Benedetti P, Wang JC (1990) Template supercoiling by a chimera of yeast GAL4 protein and phage T7 RNA polymerase. Science 249:1261–1265PubMedCrossRefGoogle Scholar
  23. Pruss GJ, Drlica K (1986) Topoisomerase I mutants: the gene of pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci USA 83:8952–8956PubMedCrossRefGoogle Scholar
  24. Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523PubMedCrossRefGoogle Scholar
  25. Rahmouni AR, Wells RD (1989) Stabilization of Z DNA in vivo by localized supercoiling. Science 246:358–363PubMedCrossRefGoogle Scholar
  26. Stewart AF, Herrera RE, Nordheim A (1990) Rapid induction of c-fos transcription reveals quantitative linkage of RNA polymerase-II and DNA topoisomerase-I enzyme activities. Cell 60:141–149PubMedCrossRefGoogle Scholar
  27. Tsao Y-P, Wu H-Y, Liu LF (1989) Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell 56:111–118PubMedCrossRefGoogle Scholar
  28. Wang JC (1971) Interaction between DNA and an E. coli protein. J Mol Biol 55:523–533PubMedCrossRefGoogle Scholar
  29. Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54:665–697PubMedCrossRefGoogle Scholar
  30. Westerhoff HV, O’Dea MH, Maxwell A, Gellert M (1988) DNA supercoiling by DNA gyrase. A static head analysis. Cell Biophys 12:157–181PubMedGoogle Scholar
  31. Wu Hy, Liu LF (1991) DNA looping alters local DNA conformation during trancription. J Mol Biol 219:615–622CrossRefGoogle Scholar
  32. Wu HV, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433–440PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • D. N. Cook
    • 1
    • 2
  • D. Ma
    • 1
    • 2
  • J. E. Hearst
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Division of Chemical BiodynamicsLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations