Skip to main content

Structure and Function of the DNA Repair Enzyme Endonuclease III

  • Chapter
Book cover Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 8))

Abstract

DNA is constantly exposed to a number of agents which can cause damage to the nitrogenous bases and the phosphodiester backbone. Damage inflicted by active oxygen or ultraviolet irradiation includes a variety of altered pyrimidine lesions. These can be repaired by a base excision repair mechanism which is initiated by DNA-N-glycosylases and AP (apurinic/aptrimidinic endonucleases. This ubiquitous repair system seems to be a major defense mechanism used by all organisms (Doetsch and Cunningham 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asahara H, Wistort PW, Bank JF, Bakerian RH, Cunningham RP (1989) Purification and characterization of Eschericia coli endonuclease III from the cloned nth gene. Biochemistry 28:4444–4449

    Article  PubMed  CAS  Google Scholar 

  • Bailly V, Verly WG (1987) Escherichia coli endonuclease III is not an endonuclease but a β-elimination catalyst. Biochem J 242:565–572

    PubMed  CAS  Google Scholar 

  • Bailly V, Verly WG (1989) AP endonucleases and AP lyases. Nucleic Acids Res 17:3617–3618

    Article  PubMed  CAS  Google Scholar 

  • Boorstein RJ, Hilbert TP, Cadet J, Cunningham RP, Teebor GW (1989) UV-induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Biochemistry 28:6164–6170

    Article  PubMed  CAS  Google Scholar 

  • Breimer L, Lindahl T (1980) A DNA glycosylase from Escherichia coli that releases free urea from a polydeoxyribonucleotide containing fragments of base residues. Nucleic Acids Res 8:6199–6211

    Article  PubMed  CAS  Google Scholar 

  • Breimer LH, Lindahl T (1984) DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation or ring contraction are functions of endonuclease III from Escherichia coli. J Biol Chem 259:5543–5548

    PubMed  CAS  Google Scholar 

  • Brennan RG, Mathews BW (1989) The helix-turn-helix DNA binding motif. J Biol Chem 264:1903–1906

    PubMed  CAS  Google Scholar 

  • Cunningham RP, Weiss B (1985) Endonuclease III (nth) mutants of Escherihia coli. Proc Natl Acad Sci USA 82:474–478

    Article  PubMed  CAS  Google Scholar 

  • Cunningham RP, Asahara H, Bank JF, Scholes CP, Salerno JC, Surerus K, Münck E, McCracken J, Peisach J, Emptage MH (1989) Endonuclease III is an iron-sulfur protein. Biochemistry 28:4450–4455

    Article  PubMed  CAS  Google Scholar 

  • Demple B, Linn S (1980) DNA N-glycosylases and UV repair. Nature 287:203–208

    Article  PubMed  CAS  Google Scholar 

  • Doetsch PW, Cunningham RP (1990) Enzymology of apurinic/apyrimidinic endonucleases. Mutat Res 236:173–201

    PubMed  CAS  Google Scholar 

  • Doetsch PW, Henner WD, Cunningham RP, Toney JH, Heiland DE (1987) A highly conserved endonuclease activity present in Escherichia coli, bovine and human cells recognizes oxidative damage at sites of pyrimidines. Mol Cell Biol 7:26–32

    PubMed  CAS  Google Scholar 

  • Fu W, O’Handley S, Cunningham RP, Johnson MK (1992) The role of the iron-sulfur cluster in Escherihia coli endonuclease III; a resonance Raman study. J Biol Chem 267:16135–16137

    PubMed  CAS  Google Scholar 

  • Gates FT, Linn S (1977) Endonuclease from Escherichia coli that acts specifically upon duplex DNA damaged by ultraviolet light, osmium tetroxide, acid or X-rays. J Biol Chem 252:2802–2807

    PubMed  CAS  Google Scholar 

  • Gerlt JA, Gassman PG (1992) Understanding enzyme catalyzed proton abstractions from carbon acids: details of stepwise mechanisms for β-elimination reactions. J Am Chem Soc 266:5928–5934

    Article  Google Scholar 

  • Jiricny J (1991) Mismatch repair in eukaryotic systems. In: Eckstein F, Lilley DMJ (eds) Nucleic Acids and Molecular Biology, vol 5. Springer, Berlin Heidelberg New York, pp 72–83

    Google Scholar 

  • Katcher HL, Wallace SS (1983) Characterization of Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry 22:4071–4081

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Linn S (1988) The mechanism of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V). Nucleic Acids Res 16:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Kow YW, Wallace SS (1987) Mechanism of Escherichia coli endonuclease III. Biochemistry 26:8200–8206

    Article  PubMed  CAS  Google Scholar 

  • Kuo C-H, McRee DE, Cunningham RP, Tainer JA (1992a) Crystallization and crystallographic characterization of the iron-sulfur-containing DNA-repair enzyme endonuclease III from Escherichia coli. J Mol Biol 227:347–351

    Article  PubMed  CAS  Google Scholar 

  • Kuo C-F, McRee DE, Fisher CL, O’Handley SF, Cunningham RP, Tainer JA (1992b) Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258:434–440

    Article  PubMed  CAS  Google Scholar 

  • Laspia MF, Wallace SS (1988) Excision repair of thymine glycols, urea residues and apurinic sites in Eschericia coli. J Bacteriol 170:3359–3366

    PubMed  CAS  Google Scholar 

  • Mazumder A, Gerlt JA, Absalon MJ, Stubbe J, Cunningham RP, Withka J, Bolton PH (1991) Stereochemical studies of the β-elimination reaction at aldehydic abasic sites in DNA: endonuclease III from Escherichia coli, sodium hydroxide and lys-trp-lys. Biochemistry 30:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Michaels ML, Pham L, Nghiem Y, Cruz C, Miller JH (1990) Mut Y, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res 18:3841–3845

    Article  PubMed  CAS  Google Scholar 

  • Michaels ML, Tchou J, Grollman AP, Miller JH (1992) A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry 31:10964–10968

    Article  PubMed  CAS  Google Scholar 

  • Morikawa K, Matsumoto O, Tsujimoto M, Katayanagi K, Ariyoshi M, Doi T, Ikehara M, Inaoka T, Ohtsuka E (1992) X-ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer. Science 256:523–526

    Article  PubMed  CAS  Google Scholar 

  • Nölling J, van Eaden FJM, Eggen RIL, deVos WM (1992) Modular organization of related archaeal plasmids encoding different restriction-modification systems in Methanobacterium thermoformicicum. Nucleic Acids Res 24:6501–6507

    Article  Google Scholar 

  • Radman M (1976) An endonuclease from Eschericia coli that introduces single polynucleotide chain scissions in ultraviolet-irradiated DNA. J Biol Chem 251:1438–1445

    PubMed  CAS  Google Scholar 

  • Saporito SM, Gedenk M, Cunningham RP (1989) Role of exonuclease III and endonuclease IV in repair of pyrimidine dimers initiated by bacteriophage T4 pyrimidine dimer-DNA glycosylase. J Bacteriol 171:2542–2546

    PubMed  CAS  Google Scholar 

  • Schrock RD, Lloyd RS (1991) Reductive methylation of the amino terminus of endonuclease V eradicates catalytic activities; evidence for an essential role of the amino terminus in the chemical mechanism of catalysis. J Biol Chem 266:17631–17639

    PubMed  CAS  Google Scholar 

  • Tsai-Wu J-J, Liu H-F, Lu A-L (1992) Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on AC and AG mispairs. Proc Natl Acad Sci USA 89:8779–8783

    Article  PubMed  CAS  Google Scholar 

  • Weibauer K, Jiricny J (1990) Mismatch-specific thymine DNA glycosylase and DNA polymerase β mediate the correction of G·T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci USA 87:5842–5845

    Article  Google Scholar 

  • Yeh Y-C, Chang D-Y, Masin J, Lu A-L (1991) Two nicking enzyme systems specific for mismatch-containing DNA in nuclear extracts from human cells. J Biol Chem 266:6480–6484

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cunningham, R.P., Thayer, M.M., Tainer, J.A. (1994). Structure and Function of the DNA Repair Enzyme Endonuclease III. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78666-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78666-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78668-6

  • Online ISBN: 978-3-642-78666-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics