Advertisement

The β Sliding Clamp of E. coli DNA Polymerase III Holoenzyme Balances Opposing Functions

  • M. O’donnell
  • J. Kuriyan
  • X.-P. Kong
  • P. T. Stukenberg
  • R. Onrust
  • N. Yao
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 8)

Abstract

The β subunit of E. coli DNA polymerase III holoenzyme (pol III holoenzyme) anchors this multiprotein chromosomal replicase to DNA for fast and highly processive replication (Kornberg and Baker 1991; Stukenberg et al. 1991). Its ring shape (Fig. 1) allows it to completely encircle DNA while freely diffusing along the duplex (Stukenberg et al. 1991; Kong et al. 1992). The β “sliding clamp” confers onto pol III holoenzyme a high degree of processivity (50kb; Fay et al. 1981) and a rapid speed of synthesis (750 nucleotides/s; O’Donnell and Kornberg 1985) which results from the continual proximity of the polymerase and DNA through their mutual association with β (Stukenberg et al. 1991).

Keywords

Proliferate Cell Nuclear Antigen Accessory Protein Central Cavity Dime Interface Preinitiation Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai N, Kornberg A (1981) Rep protein as a helicase in an active, isolatable replication fork of duplex Φχ174 DNA. J Biol Chem 256:5294–5298PubMedGoogle Scholar
  2. Blinkowa AL, Walker JL (1990) Programmed ribosomal frameshifiting generates the Escherichia coli DNA polymerase III γ subunit from within the τ subunit reading frame. Nucleic Acids Res 18:1725–1729PubMedCrossRefGoogle Scholar
  3. Bonner CA, Stukenberg PT, Rajagopalan M, Eritja R, O’Donnell M, McEntee K, Echols H, Goodman MF (1992) Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem 267:11431–11438PubMedGoogle Scholar
  4. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase delta. Nature 326:515–517PubMedCrossRefGoogle Scholar
  5. Burgers PMJ (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with proliferating cell nuclear antigen and with DNA polymerases δ and ε. J Biol Chem 266:22698–22706PubMedGoogle Scholar
  6. Burgers PMJ, Kornberg A (1982a) ATP activation of DNA polymerase III holoenzyme from Escherichia coli. I. ATP dependent formation of an initiation complex with a primed template. J Biol Chem 257:11468–11473PubMedGoogle Scholar
  7. Burgers PMJ, Kornberg A (1982b) ATP activation of DNA polymerase III holoenzyme from Escherichia coli. II. Initiation complex: stoichiometry and reactivity. J Biol Chem 257:11474–11478PubMedGoogle Scholar
  8. Burgers PMJ, Kornberg A (1983) The cycling of Escherichia coli DNA polymerase III holoenzyme in replication. J Biol Chem 258:7669–7675PubMedGoogle Scholar
  9. Burgers PMJ, Kornberg A, Sakakibara Y (1981) The dnaN gene codes for the β subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 78:5391–5395PubMedCrossRefGoogle Scholar
  10. Carter JR, Franden MA, Aebersold R, McHenry CS (1992) Molecular cloning sequencing and overexpression of the structural gene encoding the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 174:7013–7025PubMedGoogle Scholar
  11. Dong Z, Onrust R, Skangalis M, O’Donnell M (1993) DNA polymerase III accessory proteins. I. holA and holB encoding δ and δ′. J Biol Chem 268:11758–11765PubMedGoogle Scholar
  12. Fay PJ, Johanson KO, McHenry CS, Bambara RA (1981) Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 256:976–983PubMedGoogle Scholar
  13. Flower AM, McHenry CS (1990) The γ subunit of DNA polymerase III holoenzyme of Esherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA 87:3713–3717PubMedCrossRefGoogle Scholar
  14. Gogol EP, Young MC, Kubasek WL, Jarvis TC, von Hippel PH (1992) Cryoelectron microscopic visualization of functional subassemblies of the bacteriophage T4 DNA replication complex. J Mol Biol 224:395–412PubMedCrossRefGoogle Scholar
  15. Herendeen DR, Kassavetis GA, Barry J, Alberts BM, Geiduschek EP (1989) Enhancement of bacteriophage T4 late transcription by components of the T4 DNA replication apparatus. Science 245:952–958PubMedCrossRefGoogle Scholar
  16. Herendeen DR, Williams KP, Kassavetis GA, Geiduschek EP (1990) An RNA polymerase-binding protein that is required for communication between an enhancer and a promoter. Science 248:573–578PubMedCrossRefGoogle Scholar
  17. Herendeen DR, Kassavetis GA, Geiduschek EP (1992) A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 256:1298–1303PubMedCrossRefGoogle Scholar
  18. Huang C-C, Hearst JE, Alberts BM (1981) Two types of replication proteins increase the rate at which T4 DNA polymerase traverses the helical regions in a single-stranded DNA template. J Biol Chem 256:4087–4094PubMedGoogle Scholar
  19. Hughes JA Jr, Bryan SK, Chen H, Moses RE, McHenry CS (1991) Escherichia coli DNA polymerase II is stimulated by DNA polymerase III holoenzyme auxiliary subunits. J Biol Chem 266:4568–4573PubMedGoogle Scholar
  20. Jarvis TC, Paul LS, von Hippel PH (1989) Structural and enzymatic studies of the T4 DNA replication system. I. Physical characterization of the polymerase accessory protein complex. J Biol Chem 264:12709–12716PubMedGoogle Scholar
  21. Jarvis TC, Newport JW, von Hippel PH (1991) Stimulation of the processivity of the DNA polymerase of bacteriophage T4 by the polymerase accessory proteins. J Biol Chem 266:1820–1840Google Scholar
  22. Johanson KO, McHenry CS (1982) The β subunit of the DNA polymerase III holoenzyme becomes inaccessible to antibody after formation of an initiation complex with primed DNA. J Biol Chem 257:12310–12315PubMedGoogle Scholar
  23. Kissinger CR, Liu B, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 angstrom resolution: a framework for understanding homeodomain-DNA interactions. Cell 63:579–590PubMedCrossRefGoogle Scholar
  24. Kong X-P, Onrust R, O’Donnell M, Kuriyan J (1992) Three dimensional structure of the β subunit of Escherichia coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425–437PubMedCrossRefGoogle Scholar
  25. Kornberg A (1988) DNA replication. J Biol Chem 263:1–4PubMedGoogle Scholar
  26. Kornberg A, Baker TA (1991) DNA replication. WH Freeman, New York, pp 165–207Google Scholar
  27. Kwon-Shin O, Bodner JB, McHenry CS, Bambara RA (1987) Properties of initiation complexes formed between Escherichia coli DNA polymerase III holoenzyme and primed DNA in the absence of ATP. J Biol Chem 262:2121–2130PubMedGoogle Scholar
  28. LaDuca RJ, Crute JJ, McHenry CS, Bambara RA (1986) The β subunit of the Escherichia coli DNA polymerase III holoenzyme interacts functionally with the catalytic core in the absence of other subunits. J Biol Chem 261:7550–7557PubMedGoogle Scholar
  29. Lee S-H, Kwong AD, Pan Z-H, Hurwitz J (1991) Studies on the activator 1 protein complex, and accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase δ. J Biol Chem 266:594–602PubMedGoogle Scholar
  30. Mace DC, Alberts BM (1984) Characterization of the stimulatory effect of T4 gene 45 protein and the gene 44/62 protein complex on DNA synthesis by T4 DNA polymerase. J Mol Biol 177:313–327PubMedCrossRefGoogle Scholar
  31. Maki H, Kornberg A (1985) The polymerase subunit of DNA polymerase III of Escherichia coli. J Biol Chem 260:12987–12992PubMedGoogle Scholar
  32. Maki S, Kornberg A (1988) DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the y subunit essential for processive synthesis. J Biol Chem 263:6555–6560PubMedGoogle Scholar
  33. McHenry CS (1982) Purification and characterization of DNA polymerase III. Identification of τ as a subunit of the DNA polymerase III holoenzyme. J Biol Chem 257:2657–2663PubMedGoogle Scholar
  34. McHenry CS (1991) DNA polymerase III holoenzyme. J Biol Chem 266:19127–19130PubMedGoogle Scholar
  35. McHenry CS, Crow W (1979) DNA polymerase III of Escherichia coli. J Biol Chem 254:1748–1753PubMedGoogle Scholar
  36. Mok M, Marians KJ (1987) The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. J Biol Chem 262:16644–16654PubMedGoogle Scholar
  37. Munn MM, Alberts BM (1991a) The T4 DNA polymerase accessory proteins form an ATP-dependent complex on a primer-template junction. J Biol Chem 266:20024–20033PubMedGoogle Scholar
  38. Munn MM, Alberts BM (1991b) DNA footprinting studies of the complex formed by the T4 DNA polymerase holoenzyme at a primer-template junction. J Biol Chem 266:20034–20044PubMedGoogle Scholar
  39. Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct Funct Genet 11:281–296CrossRefGoogle Scholar
  40. Nossal NG, Alberts BM (1983) Mechanism of DNA replication catalyzed by purified T4 replication proteins. In: Mathews CK, Kutter EM, Mosig G, Berget PB (eds) Bacteriophage T4. American Society for Microbiology, Washington, DC, pp 71–81Google Scholar
  41. O’Donnell M (1987) Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J Biol Chem 262:16558–16565PubMedGoogle Scholar
  42. O’Donnell M (1992) Accessory protein function in the DNA polymerase III holoenzyme from E. coli. BioEssays 14:105–111PubMedCrossRefGoogle Scholar
  43. O’Donnell M, Kornberg A (1985) Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J Biol Chem 260:12875–12883PubMedGoogle Scholar
  44. O’Donnell M, Studwell PS (1990) Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. J Biol Chem 265:1179–1187PubMedGoogle Scholar
  45. O’Donnell M, Onrust R, Dean FB, Chen M, Hurwitz J (1993) Homology in accessory proteins of replicative polymerases — E. coli to humans. Nucleic Acids Res 21:1–3PubMedCrossRefGoogle Scholar
  46. Onrust R (1993) The structure and function of the accessory proteins of the E. coli DNA polymerase III holoenzyme. PhD Thesis, Cornell University Medical Center, New YorkGoogle Scholar
  47. Onrust R, O’Donnell M (1993) DNA polymerase III accessory proteins. II. Characterization of δ and δ′. J Biol Chem 268:11766–11772PubMedGoogle Scholar
  48. Onrust R, Stukenberg PT, O’Donnell M (1991) Analysis of the ATPase subassembly which initiates processive DNA synthesis by DNA polymerase III holoenzyme. J Biol Chem 266:21681–21686PubMedGoogle Scholar
  49. O’Reilly DR, Crawford AM, Miller LK (1989) Viral proliferating cell nuclear antigen. Nature 337:606PubMedCrossRefGoogle Scholar
  50. Prelich G, Tan C-K, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase auxiliary protein. Nature 326:517–520PubMedCrossRefGoogle Scholar
  51. Roth AC, Nossal NG, Englund PT (1982) Rapid hydrolysis of deoxynucleoside triphosphates accompanies DNA synthesis by T4 DNA polymerase and T4 accessory protein 44/62 and 45. J Biol Chem 257:1267–1273PubMedGoogle Scholar
  52. Sancar A, Hearst JE (1993) Molecular matchmakers. Science 259:1415–1420PubMedCrossRefGoogle Scholar
  53. Scheuermann RH, Echols H (1985) A separate editing exonuclease for DNA replication: the ε subunit of Escherichia coli DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 81:7747–7751CrossRefGoogle Scholar
  54. Sinha NK, Morris CF, Alberts BM (1980) Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. J Biol Chem 225:4290–4303Google Scholar
  55. Studwell PS, Stukenberg PT, Onrust R, Skangalis M, O’Donnell M (1990) Replication of the lagging strand by DNA polymerase III holoenzyme. UCLA Symp Mol Cell Biol New Ser 127:153–164Google Scholar
  56. Studwell-Vaughan PS, O’Donnell M (1991) Constitution of the twin polymerase of DNA polymerase III holoenzyme. J Biol Chem 266:19833–19841PubMedGoogle Scholar
  57. Studwell-Vaughan PS, O’Donnell M (1993) DNA polymerase III accessory proteins. V. θ encoded by holE. J Biol Chem 268:11785–11791PubMedGoogle Scholar
  58. Stukenberg PT (1993) The dynamics of E. coli DNA polymerase III holoenzyme in an in vitro lagging strand model system. PhD Thesis, Cornell University Medical College, New YorkGoogle Scholar
  59. Stukenberg PT, Studwell-Vaughan PS, O’Donnell M (1991) Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme. J Biol Chem 266:11328–11334PubMedGoogle Scholar
  60. Tsuchihashi Z, Kornberg A (1989) ATP interactions of the τ and γ subunits of DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 264:17790–17795PubMedGoogle Scholar
  61. Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 87:2516–2520PubMedCrossRefGoogle Scholar
  62. Tsurimoto T, Stillman B (1990) Functions of replication factor C and proliferating cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci USA 87:1023–1027PubMedCrossRefGoogle Scholar
  63. Wickner S (1976) Mechanism of DNA elongation catalyzed by Escherichia coli DNA polymerase III, dnaZ protein, and DNA elongation factors I and III. Proc Natl Acad Sci USA 73:3511–3515PubMedCrossRefGoogle Scholar
  64. Wickner S, Hurwitz J (1974) Conversion of ΦX174 viral DNA to double-stranded form by purified Escherichia coli proteins. Proc Natl Acad Sci USA 71:4120–4124PubMedCrossRefGoogle Scholar
  65. Wu YH, Franden MA, Hawker JR, McHenry CS (1984) Monoclonal antibodies specific for the a subunit of the Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 259:12117–12122PubMedGoogle Scholar
  66. Xiao H, Crombie R, Dong Z, Onrust R, O’Donnell M (1993a) DNA polymerase III accessory proteins. III. holC and holD encoding χ and ψ. J Biol Chem 268:11773–11778PubMedGoogle Scholar
  67. Xiao H, Dong Z, O’Donnell M (1993b) DNA polymerase III accessory proteins. IV. Characterization of χ and ψ. J Biol Chem 268:11779–11784PubMedGoogle Scholar
  68. Xiong Y, Zhang H, Beach D (1993) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514CrossRefGoogle Scholar
  69. Yoder BL, Burgers PMJ (1991) Saccharomyces cerevisiae replication factor C. I. Purification and characterization of its ATPase activity. J Biol Chem 266:22689–22697PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • M. O’donnell
    • 1
  • J. Kuriyan
    • 2
  • X.-P. Kong
    • 2
  • P. T. Stukenberg
    • 1
  • R. Onrust
    • 1
  • N. Yao
    • 1
  1. 1.Microbiology DepartmentHearst Research Center, Howard Hughes Medical Institute, Cornell Medical CollegeNew YorkUSA
  2. 2.Laboratories of Molecular BiophysicsHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUSA

Personalised recommendations