Advertisement

Somatic Embryogenesis in Ryegrass (Lolium multiflorum) and Tall Fescue (Festuca arundinacea)

  • G. Alibert
  • A. Sallandrouze
  • C. Grand
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 31)

Abstract

Ryegrass (Lolium multiflorum Lam.) and tall Fescue (Festuca arundinacea Scherb.) are two of the most important grasses cultivated in the world as forage and turf. For example, around 160 000 tonnes of grain seed (forage and turf) are marketed every year in western Europe. This total includes 75 0001 of perennial ryegrass, and 30 000 t of tall fescue.

Keywords

Somatic Embryogenesis Plant Regeneration Cell Suspension Culture Tall Fescue Immature Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonnecuelle MH (1992) Obtention d’hydrides Festulolium par sauvetage d’embryons immature issus de croisements interspécifiques. Le Selectioneur Francais 42: 41–46Google Scholar
  2. Bückner RC, Hill HD, Burrus PD (1961) Some characteristic of annual and perennial ryegrass x tall fescue hybrids and the amphiploid progenies of annual ryegrass x tall fescue. Corp Sci 1: 75–80CrossRefGoogle Scholar
  3. Creemers-Molenaar J, Van Der Valk P, Loeffen JPM, Zaal MACM (1989) Plant regeneration from suspension cultures and protoplasts of Lolium perenne L. Plant Sci. 63: 167–176CrossRefGoogle Scholar
  4. Dale PJ (1980) Embryoids from cultured immature embryos of Lolium multiflorum. Z Pflanzenphysiol 100: 573–577Google Scholar
  5. Dalton SJ (1988) Plant regeneration from cell suspension protoplasts of Festuca arundinaceae Schreb. (tall fescue) and Lolium perenne L. (perennial ryegrass). J Plant Physiol 132: 170–175Google Scholar
  6. Humphreys MW (1989) The controlled introgression of Festuca arundinacea genes into Lolium multiflorum. Euphytica 42: 105–116CrossRefGoogle Scholar
  7. Jackson J A, Dale PJ (1989) Somaclonal variation in Lolium multiflorum and L. temulentum L. Plant Cell Rep 8: 161–64CrossRefGoogle Scholar
  8. Kleijer G (1988) Les croisements interspécifiques en amélioration des plantes. I. Raygrass d’Italie x fétuque élevée. Rev Suisse Agric 20: 165–170Google Scholar
  9. Lewiss FJ (1966) The production and manipulation of new breeding material inLolium-Festuca. In Hill AGG (ed) Proc 10th Int Grassland Congr. Finnish Grassland Association, Helsinki, pp 688–693Google Scholar
  10. Lowe KW, Conger BV (1979) Root and shoot formation from callus culture of tall fescue. Corp Sci 19: 397–400CrossRefGoogle Scholar
  11. Murashige T, Skoog F, (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  12. Peto FM (1933) The cytology of certain intergeneric hybrids between Lolium and Festuca. J Genet 28: 113–157CrossRefGoogle Scholar
  13. Radilofe S (1991) Amélioration génétique de la fétuque élevée et du raygrass: approche biotechnologique. Thèse doctorat, Institut National Polytechnique Toulouse, FranceGoogle Scholar
  14. Radilofe-Rajoelina S, Alibert G, Planchon C (1990) Continuous plant regeneration from established embryogenic cell suspension cultures of italian ryegrass and tall fescue. Plant Breed 104: 265–271CrossRefGoogle Scholar
  15. Rybozynski JJ, Zwierzykowski Z, Slusarkiewicz-Jardina A (1983) Plant regeneration with doubled chromosome number in tissue culture of F1 Lolium-Festuca hybrids. Genet Pol 21: 1–7Google Scholar
  16. Sam B, Wu FS, Thorne TK (1992) Transgenic tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Cell Biochem Sup 16F: 207Google Scholar
  17. Takamizo T, Suginobu KI, Ohsugi R (1990) Plant regeneration from suspension culture derived protoplasts of tall fescue (Festuca arundinacea Schreb.) of a single genotype. Plant Sci. 72:125–131CrossRefGoogle Scholar
  18. Takamizo T, Wang Z, Suginobu K, Perez-Vincente R, Potrykus I, Spangenberg G (1992) Biotechnological approaches to forage grass improvement: Festuca and Lolium. J Cell Biochem Suppl. 16F: 212Google Scholar
  19. Torello WA, Symington AG (1984) Regeneration from perennial ryegrass callus tissues. Hort Science 19: 56–57Google Scholar
  20. Torella WA, Symington AG, Rufner R (1984) Callus initiation, plant regeneration and evidence of somatic embryogenesis in red fescue. Crop Sci 24: 1037–1040CrossRefGoogle Scholar
  21. Van Den Bogaert CW (1991) Achievements in fodder crop breeding. In: Den Nijs APM, Elgersma A (eds) Fodder crop breeding: achievements, novel strategies and biotechnology. Pudoc, Wageningen pp 77–78Google Scholar
  22. Vasil IK (1987) Developing cell tissue culture systems for the improvement of cereal and grass crops. J Plant Physiol 128: 193–218Google Scholar
  23. Wang Z, Takamizo T, Iglesia J A, Osusky M, Nagel J, Potrykus I, Spangenberg G (1992) Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology 10: 691–696PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. Alibert
    • 1
  • A. Sallandrouze
    • 1
  • C. Grand
    • 2
  1. 1.Laboratoire de Biotechnologie et Amélioration des Plantes (BAP)INP-ENSAT, Unité associée á l’INRAToulouse CedexFrance
  2. 2.RAGTRodez CedexFrance

Personalised recommendations