Skip to main content

Somatic Embryogenesis and Synthetic Seed in Apium graveolens (Celery)

  • Chapter
Somatic Embryogenesis and Synthetic Seed II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 31))

Abstract

Celery (Apium graveolens) is normally a biennial plant, but can complete its life cycle in a year if subjected to low temperatures. In the vegetative phase (the first year) the plant is composed mostly of petioles and leaves (60 cm in height), with a condensed shoot that does not elongate. The stem elongates during the second year, after vernalization, and the plant grows to 1–2 m in height. The stem terminates in a compound umbellate flower. Two types of celery are grown for commercial use: the green and the golden, self-balancing varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Abta S, Collin HA (1979) Cytokinin changes during embryoid development in celery tissue cultures. New Phytol 82: 29–35

    Article  CAS  Google Scholar 

  • Altman A (1989) Polyamines and plant hormones. In: Bachrach U, Heimer YM (eds) The physiology of polyamines, vol II. CRC Press, Boca Raton, pp 121–145

    Google Scholar 

  • Altman A, Levin N, Cohen P, Schneider M, Nadel BL (1989) Polyamines in growth and differentiation of plant cell cultures: the effect of nitrogen nutrition, salt stress and embryogenic media. In: Zappia V, Pegg AE (eds) Progress in polyamine research. Plenum Press, New York, pp 559–572

    Google Scholar 

  • Altman A, Nadel BL, Falash Z, Levin N (1990) Somatic embryogenesis in celery: induction, control and changes in polyamines and proteins. In: Nijkamp HJJ, Van Der Pias LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer Academic, Dordecht, pp 454–459

    Chapter  Google Scholar 

  • Ammirato PV (1983) Embryogeneis. In: Evans DA, Sharp WR, Yamada Y (eds) Handbook of plant cell culture, vol I. Macmillian New York, pp 82–123

    Google Scholar 

  • Ammirato PV (1989) Recent progress in somatic embryogenesis. IAPTC News letter, pp 2–16

    Google Scholar 

  • Ammirato PV, Steward FC (1971) Some effects of the environment on the development of embryos from cultured free cells. Bot Gaz 132: 149–158

    Article  Google Scholar 

  • Ammirato PV, Styer DJ (1985). Strategies for large-scale manipulation of somatic embryos in suspension culture. In: Zaitlin M, Day P, Hollaender A (eds) Biotechnology in plant science: relevance to agriculture in the eighties. Academic Press, New York pp 161–178

    Google Scholar 

  • Browers MA, Orton TJ (1982) A factorial study of chromosomal variability in callus cultures of celery (Apium graveolens). Plant Sci Lett 26: 65–73

    Article  Google Scholar 

  • Browers MA, Orton TJ (1986) Celery (Apium graveolens L). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 2. Crop I. Springer-Berlin Heidelberg New York, pp 485–519

    Google Scholar 

  • Chen CH (1976) Vegetative propagation of the celery plant by tissue culture. Proc S Dakota Acad Sci 55: 44–48

    Google Scholar 

  • Danin M, Upfold SJ, Levin N, Nadel BL, Altman A, Van Staden J (1993) Polyamines and cytokinins in celery embryogenesis cell cultures. Plant Growth Regul 12: 245–254

    Article  CAS  Google Scholar 

  • Ernst D, Oestrehelt D, Schafer W (1984) Endogenous cytokinins during embryogenesis in an anise cell culture (Pimpinella anisum L.). Planta 161: 240–245

    Article  CAS  Google Scholar 

  • Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433–1435

    Article  PubMed  CAS  Google Scholar 

  • Fujimura T, Komamine A (1975) Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sci Lett 5: 359–364

    Article  CAS  Google Scholar 

  • Fujimura T, Komamine A. (1980) Mode of action of 2,4-D and zeatin on somatic embryogenesis in a carrot cell suspension culture. Z Pflanzenphysiol 99:1–8

    CAS  Google Scholar 

  • Halperin W, Wethrell DF (1964) Adventive embryony in tissue cultures of the wild carrot, Daucus carota. Am J Bot 51: 274–283

    Article  CAS  Google Scholar 

  • Heath-Pagliuso S, Rappaport L (1990) Somaclonal variant UC-T3: the expression of Fusarium wilt resistance in progeny arrays of celery,Apium graveolens L. TAG 80: 390–394

    Google Scholar 

  • Heath-Pagliuso S, Pullman J, Rappaport L (1988) Somaclonal variation in celery: screening for resistance for Fusarium oxysporum f. sp. apii. TAG 75: 446–445

    Article  Google Scholar 

  • Heath-Pagliuso S, Pullman J, Rappaport L (1989) UC-T3: somaclone: celery germplasm resistant to Fusarium oxysporum f. sp. apii, race 2. Horcience 24: 711–712

    Google Scholar 

  • Ireland KF, Lacy ML (1987) Greenhouse screening of celery somaclone progeny for resistance to Fusarium oxysporum f. sp. apii race 2. Phytopathology 77:176

    Google Scholar 

  • Ireland KF, Elmer WH, Lacy ML (1987) Field evaluation of celery germplasm for resistance to Fusarium oxysporum f. sp. apii race 2. Phytopathology. 77: 1712

    Google Scholar 

  • Jin Ji-yi, Kuo Chung-chen (1988) Studies on artificial seeds of celery. In: Recent advances on studies of applied and fundamental aspects of plant cell engineering. Science Periodical Press, Beijing pp 84–89

    Google Scholar 

  • Kamada H, Harada H (1981) Changes in the endogenous levels and effects of abscisic acid during somatic embryogenesis of Daucus carota L. Plant Cell Physiol 22: 1423–1429

    CAS  Google Scholar 

  • Kim YH, Janick J (1989) ABA and polyox-encapsulation or high humidity increase survival of desiccated somatic embryos of celery. Hort Science 24: 674–675

    CAS  Google Scholar 

  • Kim YH, Janick J (1991) Abscisic acid and proline improve desiccation tolerance and increases fatty acid content of celery somatic embryos. Plant Cell Tissue Orgn Cult 24: 83–89

    Article  CAS  Google Scholar 

  • Kitto SL, Janick J (1985a) Production of synthetic seeds by encapsulating asexual embryos of carrot. J Am Soc Hortic Sci 110: 277–282

    Google Scholar 

  • Kitto SL, Janick J (1985b) Hardening treatment increased survival of synthetically coated asexual embryos of carrot. J Am Soc Hortic Sci 110: 283–286

    CAS  Google Scholar 

  • Levin R, Gaba V, Tal B, Hirsch S, Nola D, Vasil IK (1988) Automated plant tissue culture for mass propagation. Bio/Technology 6: 1035–1040

    Article  Google Scholar 

  • Merrick MMA, Collin HA (1982) Selection for asulam resistance in tissue cultures of celery, Apium graveolens L. var. dulce cv. New Dwarf White. Plant Sci Lett 20: 291–296

    Google Scholar 

  • Metcalf EC, Collin HE (1978) The effect of simazine on the growth and respiration of a cell suspension culture of celery. New Phytol 81:243–248

    Article  CAS  Google Scholar 

  • Montague MJ, Koppenbrink JW, Jaworski EG (1978) Polyamine metbolism in embryogenic cells of Daucus carota. I. Changes in intracellular content and rates of synthesis. Plant Physiol 62: 430–433

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Murata M, Orton TJ (1983) Chromosome structural changes in cultured celery cells. In Vitro 19:83–89

    Article  Google Scholar 

  • Nadel BL, Altman A, Ziv M (1989) Regulation of somatic embryogenesis in celery cell suspensions. I. Establishment of embryogenic cultures and the beneficial effect of mannitol. Plant Cell Tissue Organ Cult 18: 181–189

    Article  CAS  Google Scholar 

  • Nadel BL, Altman A, Ziv M (1990a) Regulation of somatic embryogenesis in celery cell suspensions. II. Early detection of embryogenic potential and the induction of synchronous cell cultures. Plant Cell Tissue Organ Cult 20: 119–124

    Article  Google Scholar 

  • Nadel BL, Altman A, Ziv M (1990b) Cold storage and efficient conversion of somatic celery embryo into transplantable plants. Sci Hortic 44: 9–16

    Article  Google Scholar 

  • Nadel BL, Altman A, Ziv M (1990c) Regulation of large scale embryogenesis in celery. Acta Hortic 280: 75–82

    Google Scholar 

  • Nomura K, Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol 79: 988–991

    Article  PubMed  CAS  Google Scholar 

  • Orton TJ (1983) Spontaneous electrophoretic and chromosomal variability in callus cultures and regenerated plants of celery. Theor Appl. Genet 67: 17–24

    Google Scholar 

  • Orton TJ (1984) Celery. In Sharp WR, Evans DA, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 2. Macmillan, New York, pp 243–247

    Google Scholar 

  • Rajasekaran K, Hein MG, Davies GC, Carnes MG, Vasil IK (1987) Endogenous growth regulators in leaves and tissue cultures of Pennisetum purpeurem Schum. J Plant Physiol 130: 13–25

    CAS  Google Scholar 

  • Rappaport L, Heath-Pagliuso S (1987) Cloning celery for plant propagation. Annu Rep California Celery Growers Assoc, Binuba, CA, pp 19–22

    Google Scholar 

  • Reinert J, Backs D, Krosing M (1966) Faktoren der Embryogenese in Gewebekulturen aus Kutuformern von Umbelliferen. Planta 68: 375–378

    Article  CAS  Google Scholar 

  • Rowe WJ (1986) New technologies in plant tissue culture. In Zimmerman RH, Hughes KW, Constantin MJ, Hollaender A (eds) Tissue culture as a plant production system for horticultural crops. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Saranga Y, Rhodes D, Janick J (1992a) Changes in amino acid composition associated with desiccation tolerance of celery somatic embryos J Am Soc Hortic Sci 117: 337–341

    CAS  Google Scholar 

  • Saranga Y, Kim YH, Janick J (1992b) Changes in desiccation tolerance and metabolities of celery somatic embryos induced by reduced osmotic potential. J Am. Soc Hortic Sci 117: 342–345

    CAS  Google Scholar 

  • USDA (1991) USDS, Agricultural statistics 1991, p 151

    Google Scholar 

  • Van Staden J, Upfold SJ, Altman A, Nadel BL (1992) Metabolism of benzyladenine in embryogenic cell cultures of celery. J Plant Physiol 140: 446–469

    Google Scholar 

  • Vasil V, Vasil IK (1982) Characterization of an embryogenic cells suspension culture derived from cultured inflorescence of Pennisetum americanum (pearl millet, Gramineae). Am J Bot 69: 1441–1449

    Article  Google Scholar 

  • Wenck AR, Conger BV, Trigiano RN, Samms CE (1988) Inhibition of somatic embryogenesis in orchardgrass by endogenous cytokinins. Plant Physiol 88: 990–992

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Collin HA (1976a) Embryogenesis and plantlet formation in tissue cultures of celery. Ann Bot 40: 325–332

    Google Scholar 

  • Williams L, Collin HA, (1976b) Growth and cytology of celery plants derived from tissue culture. Ann Bot 40: 333–338

    Google Scholar 

  • Wright JC, Lacy ML (1988) Increase of disease resistance in celery cultivars by regeneration of whole plants from cell suspension cultures. Plant Dis 72: 256–259

    Article  Google Scholar 

  • Zee SY, Wu SC (1979) Embryogenesis in the petiole explant of Chinese celery Z Pfanzenphysiol 93: 325–436

    Google Scholar 

  • Zee SY, Wu SC (1980) Somatic embryogenesis in leaf explants in Chinese celery. Aust J Bot 28: 429–436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nadel, B.L., Altman, A., Ziv, M. (1995). Somatic Embryogenesis and Synthetic Seed in Apium graveolens (Celery). In: Bajaj, Y.P.S. (eds) Somatic Embryogenesis and Synthetic Seed II. Biotechnology in Agriculture and Forestry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78643-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78643-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78645-7

  • Online ISBN: 978-3-642-78643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics