Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 31))

Abstract

Wheat is the most intensively bred species in the world. It is second to rice in world production, which in recent years has approached 550 million metric tonnes per year (Young et al. 1990). The bread wheats (Triticum aestivum L.) are divided into four main categories, based on the protein content of the grain. Hard red spring (11 to 18% protein) and winter (9 to 15% protein) wheats are used primarily for bread. Soft red winter (8 to 12%) protein) and white (8 to 11% protein) wheats are used primarily for muffins, noodles, cakes, crackers, and cookies. Durum wheat (Triticum durum L.) is used primarily for macaroni and pasta. While an extremely adaptive crop, wheat is still subject to many diseases, which makes genetic engineering an appealing biotechnology for wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahloowalia BS (1982) Plant regeneration from callus culture in wheat. Crop Sci 22: 405–410

    Article  Google Scholar 

  • Barcelo P, Lazzeri PA, Martin A, Lörz H (1992) Competence of cereal leaf cells. II. Influence of auxin, ammonium and explant age on regeneration. J Plant Physiol 139: 448–454

    CAS  Google Scholar 

  • Carman JG (1988) Improved somatic embryogenesis in wheat by partial simulation of the in-ovulo oxygen, growth-regulator and desiccation environments. Planta 175: 417–424

    Article  CAS  Google Scholar 

  • Carman JG (1989) The in ovulo environment and its relevance to cloning wheat via somatic embryogenesis. In Vitro 25: 1155–1162

    Google Scholar 

  • Carman JG (1990) Embryogenic cells in plant tissue cultures: occurrence and behavior. In Vitro 26: 746–753

    Google Scholar 

  • Carman JG, Hess JR, Bishop D, Hole DJ (1993) In ovulo environments and embryo dormancy in wheat. In: Walker-Simmons MK, Ricd JL (eds) Pre-harvest sprouting in cereals 1992. Am Assoc Cereal Chemists, St Paul, Minnesota, pp 163–170

    Google Scholar 

  • Carman JG, Campbell WF (1990) Factors affecting somatic embryogenesis in wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13, Wheat. Springer, Berlin Heidelberg New York, pp 68–87

    Google Scholar 

  • Carman JG, Jefferson NE, Campbell WF (1988) Induction of embryogenic Triticum aestivum L. calli. I. Quantification of genotype and culture medium effects. Plant Cell Tissue Organ Cult 12: 83–95

    Article  Google Scholar 

  • Chang YF, Wang WC, Warfield CY, Nguyen HT, Wong JR (1991) Plant regeneration from protoplasts isolated from long-term cell cultures of wheat (Triticum aestivum L.). Plant Cell Rep 9: 611–614

    Article  Google Scholar 

  • Galiba G, Kovacs G, Sutka J (1986) Substitution analysis of plant regeneration from callus culture in wheat. Plant Breed 97: 261–263

    Article  Google Scholar 

  • Guo GQ, Xia GM, Li ZY, Chen HM (1990) Direct somatic embryogenesis and plant regeneration from protoplast-derived cells of wheat (Triticum aestivum L.). Sci Sin 9: 970–974

    Google Scholar 

  • Harris R, Wright M, Byrne M, Varnum J, Brightwell B, Schubert K (1988) Callus formation and plantlet regeneration from protoplasts derived from suspension cultures of wheat (Triticum aestivum L.). Plant Cell Rep 7: 337–340

    Article  Google Scholar 

  • Hashim ZH, Campbell WF, Carman JG (1990) Morphological analysis of spring wheat (CIMMYT cv PCYT-10) somaclones. Plant Cell Tissue Organ Cult 20: 95–99

    Article  Google Scholar 

  • Hayashi Y, Shimamoto K (1988) Wheat protoplast culture: embryogenic colony formation from protoplasts. Plant Cell Rep 7: 414–417

    Article  Google Scholar 

  • He DG, Yang YM, Scott KJ (1989) The effect of macroelements in the induction of embryogenic callus from immature embryos of wheat (Triticum aestivum L.). Plant Sci 64: 251–258

    Article  CAS  Google Scholar 

  • He DG, Yang YM, Scott KJ (1991) Zinc deficiency and the formation of white structures in immature embryo cultures of wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 24: 9–12

    Article  CAS  Google Scholar 

  • He DG, Yang YM, Scott KJ (1992) Plant regeneration from protoplasts of wheat (Triticum aestivum cv. Hartog). Plant Cell Rep 11: 16–19

    Article  CAS  Google Scholar 

  • Hess JR (1992) Wheat kernal hormone levels during development and their relevance to zygotic and somatic embryogenesis. P Diss, Utah State University, Logan, UT

    Google Scholar 

  • Hess JR, Carman JG (1993) Normalizing development of cultured Triticum aestivum L. Embryos. I. Low oxygen tensions and exogenous ABA. J Exp Bot 44: 1067–1073

    Article  CAS  Google Scholar 

  • Kaleikau EK, Sears RG, Gill BS (1989a) Control of tissue culture response in wheat (Triticum aestivum L.). Theor Appl Genet 78: 783–787

    Google Scholar 

  • Kaleikau EK, Sears RG, Gill BS (1989b) Monosomic analysis of tissue culture response in wheat (Triticum aestivum L.). Theor Appl Genet 78: 625–632

    Google Scholar 

  • Larkin PJ, Spindler LH, Banks PM (1990) The use of cell culture to restructure plant genomes for introgressive breeding. In: Kimber G (ed) Proc 2nd Int Symp Chromosome engineering in plants. University of Missouri Press, Columbia, pp 80–89

    Google Scholar 

  • Lazar MD, Chen THH, Scoles GJ, Kartha KK (1987) Immature embryo and anther culture of chromosome addition lines of rye in Chinese Spring wheat. Plant Sci 51: 77–81

    Article  Google Scholar 

  • Li ZY, Xia GM, Chen HM (1992a) Somatic embryogenesis and plant regeneration from protoplasts isolated from embryogenic cell suspensions of wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 28: 79–85

    Article  Google Scholar 

  • Li ZY, Xia GM, Chen HM, Guo GQ (1992b) Plant regeneration from protoplasts derived from embryogenic suspension cultures of wheat(Triticum aestivum L.). J Plant Physiol 139:714–718

    Google Scholar 

  • Liu H, Misoo S, Kamijima O, Sawano M (1992) Effects of casein hydrolysate on the response in immature embryo culture of wheat (Triticum aestivum L). Jpn J Breed 42: 367–373

    CAS  Google Scholar 

  • Magnusson I, Bornman CH (1985) Anatomical observations on somatic embryogenesis from scutellar tissues of immature zygotic embryos of Triticum aestivum. Physiol Plant 63: 137–145

    Article  Google Scholar 

  • Mohmand AS, Nabors MW (1991) Comparison of two methods for callus culture and plant regeneraticm in wheat (Triticum aestivum). Plant Cell Tissue Organ Cult 26: 185–187

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Vasil IK (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (Wheat): evidence for somatic embryogenesis. Protoplasma 110:95–105

    Article  Google Scholar 

  • Ozias-Akins P, Vasil IK (1983) Improved efficiency and normalization of somatic embryogenesis in Triticum aestivum (wheat). Protoplasma 117: 40–44

    Article  Google Scholar 

  • Qiao YM, Cattaneo M, Locatelli F, Lupotto E (1992) Plant regeneration from long term suspension culture-derived protoplasts of hexaploid wheat(Triticum aestivum L.). Plant Cell Rep 11: 262–265

    Article  CAS  Google Scholar 

  • Rajyalakshmi K, Grover A, Maheshwari N, Tyagi AK, Maheshwari SC (1991) High frequency regeneration of plantlets from the leaf-bases via somatic embryogenesis and comparison of polypeptide profiles from morphogenic and non-morphogenic calli in wheat (Triticum aestivum). Physiol Plant 82: 617–623

    Article  CAS  Google Scholar 

  • Redway FA, Vasil V, Vasil IK (1990a) Characterization and regeneration of wheat (Triticum aestivum L.) embryogenic cell suspension cultures. Plant Cell Rep 8: 714–717

    Article  CAS  Google Scholar 

  • Redway FA, Vasil V, Lu D, Vasil IK (1990b) Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theor Appl Genet 79: 609–617

    Article  Google Scholar 

  • Ren JG, Jia JF, Li MY, Zhen GC (1989) Plant regeneration from protoplasts isolated from callus initiated from immature inflorescences of wheat (Triticum aestivum L.). Sci Sin B 9: 693–695

    Google Scholar 

  • Scott KJ, He DG, Yang YM (1990) Somatic embryogenesis in wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13, Wheat. Springer, Berlin Heidelberg New York, pp 46–67

    Google Scholar 

  • Tabaeizadeh Z, Campeau N (1992) Embryogenic cell suspensions of Triticum aestivum x Leymus angustus F, hybrids: characterization and plant regeneration. Plant Cell Rep 11: 81–85

    Article  Google Scholar 

  • Vasil V, Redway F, Vasil IK (1990) Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.). Bio/Technology 8: 429–434

    Article  Google Scholar 

  • Vasil V, Castillo A, Fromm M, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667–674

    Article  CAS  Google Scholar 

  • Wang HB, Li XH, Sun YY, Chen J, Zhu Z, Fang R, Wang P (1989) High frequency of callus formation and plant regeneration from protoplasts of wheat (Triticum aestivum L.). Sci Sin 8:828–834

    Google Scholar 

  • Wang WC, Nguyen HT (1990) A novel approach for efficient plant regeneration from long-term suspension culture of wheat. Plant Cell Rep 8: 639–642

    Article  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102: 1077–1088

    PubMed  CAS  Google Scholar 

  • Wernicke W, Milkovits L (1986) The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid. Protoplasma 131: 131–141

    Article  CAS  Google Scholar 

  • Yang YM, He DG, Scott KJ (1991) Establishment of embryogenic suspension cultures of wheat by continuous callus selection. Aust J Plant Physiol 18: 445–452

    Article  CAS  Google Scholar 

  • Young E, Allen E, Evans S (1990) The wheat program in the 1990s: issues for decision makers. USD A Econ Res Ser, Agric Inf Bull 606: 1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carman, J.G. (1995). Somatic Embryogenesis in Wheat. In: Bajaj, Y.P.S. (eds) Somatic Embryogenesis and Synthetic Seed II. Biotechnology in Agriculture and Forestry, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78643-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78643-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78645-7

  • Online ISBN: 978-3-642-78643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics