Immunoregulation of T cell-mediated skin hypersensitivity

  • Rik J. Scheper
  • B. Mary
  • E. von Blomberg
Conference paper
Part of the Archives of Toxicology, Supplement 16 book series (TOXICOLOGY, volume 16)


Allergic contact dermatitis is based on the increased frequency of allergen-specific effector T cells throughout the body of a sensitized individual, as well as on the enhanced capacity of these effector cells to enter peripheral tissues. The basic mechanism of allergic contact dermatitis has been recently outlined (Kapsenberg et al, 1992; Scheper et al, 1992).


Contact Dermatitis Suppressor Cell Allergic Contact Dermatitis Immunological Tolerance Effector Cell Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon R and Teitelbaum D. On the existence of suppressor cells. Int Arch Allergy Immunol. 100: 2–7, 1993PubMedCrossRefGoogle Scholar
  2. Barker, JNWN, Mitra, RS, Griffiths, CEM, Dixit, VM, Nickoloff, BJ. Keratinocytes as initiators of inflammation. The Lancet 1991; 337: 211–214.CrossRefGoogle Scholar
  3. Benezra C, Sigman CC, Bagheri D, Fraginals R, Maibach HI. Molecular aspects of allergic contact dermatitis. In: Rycroft RJG, Menné T, Frosch PJ and Benezra, C. (Eds.) Textbook of Contact Dermatitis, Springer-Verlag, Berlin, pp.105–117 (1992).Google Scholar
  4. Bloom BR, Salgame P, Diamons B. Revisiting and revising suppressor T cells. Immunol Today 13, 4: 131–136, 1992.CrossRefGoogle Scholar
  5. Dearman RJ, Kimber I. Differential stimulation of immune function by respiratory and contact chemical allergens. Immunology 72: 563–570, 1991.PubMedGoogle Scholar
  6. Del Prete G, De Carli M, Almerigogna F, Guidizi MG, Biagiotti R, Romagnani S. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 150, 2: 353–360,1993.Google Scholar
  7. Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity. Proc. Natl. Acad. Sci. USA. 1992: 1398–1402.Google Scholar
  8. Enk AH, Angeloni VL, Udey MC, Katz SI. An essential role for Langerhans cell-derived Il-1ß in the initiation of primary immune responses in skin. J Immunol 150: 3698–3704, 1993.PubMedGoogle Scholar
  9. Eynon BE, Parker DC. Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J. Exp. Med. 175: 131–138,1992.PubMedCrossRefGoogle Scholar
  10. Fairchild RL, Palmer E, Moorhead JW. Production of DNP-specific/Class I MHC-restricted suppressor molecules is linked to the expression of T cell receptor α- and ß-chain genes. J Immunol 150, 1: 67–77, 1993.Google Scholar
  11. Gershon RK and Kondo K: Cell interactions in the induction of tolerance. The role of thymic lymphocytes. Immunology 18: 723–737,1970.PubMedGoogle Scholar
  12. Gieni RS, Yang X, HayGlass KT. Allergen-specific modulation of cytokine synthesis patterns and IgE responses in vivo with chemically modified allergen. J Immunol 150,1, 302–310,1993.Google Scholar
  13. Goebeler M, Meinardu-Hager G, Roth J, Goerdt S, Sorg C. Nickel choride and cobals chloride, two common contact sensitizers, directly induce expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and endothelial leukocyte adhesion molecule (ELAM-1) by endothelial cells. J Invest Dematol 100: 759–765, 1993.CrossRefGoogle Scholar
  14. Hoogstraten, IMW van, Boden, D. Blomberg, BME von, Kraal, G, Scheper, RJ. Persistent immune tolerance to nickel and chromium by oral administration prior to cutaneous sensitization. J. Invest. Derm. 608–617, 1992.Google Scholar
  15. Hoogstraten IMW van, Boos, C, Boden, D, Blomberg, BME von, Scheper RJ, and Kraal, G. Oral induction of tolerance to nickel sensitization in mice. J. Invest. Derm, in press, 1993a.Google Scholar
  16. Hoogstraten, IMW van, von Blomberg, BME, Boden, D. Kraal, G, Scheper, RJ. Non-sensitizing epicutaneous skin contacts prevent subsequent induction of immune tolerance. J. Invest. Derm., in press, 1993b.Google Scholar
  17. Hsieh CS, Macatonia SE, Tripp CS, Wolf S, O’Garra A, Murphy KM. Development of Thl CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260: 547–549, 1993.PubMedCrossRefGoogle Scholar
  18. Jones LA, Chin LT, Longo DL, Kruisbeek AM. Peripheral clonal elimination of functional T cells. Science 250: 1726–1729, 1990.PubMedCrossRefGoogle Scholar
  19. Karpus WJ, Swanborg RH. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-ß. J Immunol 146, 15: 1163–1168, 1991.Google Scholar
  20. Kapsenberg ML, Wierenga EA, Bos JD and Jansen HM. Functional subsets of allergen-reactive CD4+ T cells. Immunol. Today 1991.Google Scholar
  21. Kapsenberg ML, Bos JD, Wierenga EA T cells in allergic responses to haptens and proteins. Springer Semin Immunopathol 13: 303–314, 1992.PubMedCrossRefGoogle Scholar
  22. Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor 6, interleukin 4 and prostaglandin E expression in the brain. J Exp med 176: 1355–1364,1992.PubMedCrossRefGoogle Scholar
  23. Kuchroo VK, Byrne MC, Atsumi Y, Greenfield E, Connoly JB, Whitters MJ, O’Hara RM, Collins M, Dorf ME. T-cell receptor α chain plays a critical role in antigen-specific suppressor cell function. Proc Natl Acad Sci USA 88: 8700–8704, 1991.PubMedCrossRefGoogle Scholar
  24. Limpens, J and Scheper, RJ. Inhibition of T suppressor cell function by local administration of an active CY-derivative at the sensitization site. Clin Exp Immunol 84: 383–388 (1991).PubMedGoogle Scholar
  25. Lehner T, Bergmeier LA, Panagiotidi C, Tao L, Brookes R, Klavinskis LS, Walker P, Ward RG, Hussain L, Gearing AJH, Adams SE. Induction of mucosal and systemic immunity to a recombinant simian immunodeficiency viral protein. Science 258: 1365–1369,1992.PubMedCrossRefGoogle Scholar
  26. Meade R, Askenase PW, Geba GP, Neddermann K, Jacoby RO, Pasternak RD. Transforming growth factor-ß1 inhibits murine immediate and delayed type hypersensitivity. J Immunol 149, 2: 521–528, 1992.Google Scholar
  27. Melamed D, Friedman A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur. J. Immunol. 23: 935–942, 1993.PubMedCrossRefGoogle Scholar
  28. Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzun P, Miloux B, Minty C, Casellas P, Loison G, Lupker J, Shire D, Ferrara P, Caput D. Interleukin 13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362: 248–250, 1993.PubMedCrossRefGoogle Scholar
  29. Ohashi PS, Oehnen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65: 305–317, 1991.PubMedCrossRefGoogle Scholar
  30. Oostendorp RAJ, Schaaper WMM, Post J, Blomberg-van der Flier, BME, Meloen RH, Scheper RJ. Suppression of lymphocyte proliferation by a retroviral p15E-derived hexapeptide. Eur J Immunol 22: 1505–1511, 1992.PubMedCrossRefGoogle Scholar
  31. Oswald IP, Gazzinelli RT, Sher A, James SL. IL-10 synergizes with IL-4 and transforming growth factor-ß to inhibit macrophage cytotoxic activity. J Immunol 148, 11: 3578–3582, 1992.Google Scholar
  32. Parker, D, Turk, JL and Scheper, RJ Central and peripheral action of suppressor cells in contact sensitivity in the guinea pig. Immunol 30: 593–597 (1976).Google Scholar
  33. Polak L. and Turk JL. Reversal of immunological tolerance by cyclophosphamide through inhibition of suppressor cell activity. Nature 249: 654–656, 1974.PubMedCrossRefGoogle Scholar
  34. Polak L. and Rinck C. Persisting activity of suppressor cells in T cell mediated immune response. J. Immunol. 121: 762–766, 1978.PubMedGoogle Scholar
  35. Polak L. Immunology of chromium. In: Chromium metabolism and toxicity. Ed. D. Burrows, CRC Press Inc. Boca Raton, FA USA, pp 51–136.Google Scholar
  36. Qin S, Cobbold SP, Pope H, Elliott J, Kioussis D, Davies J, Waldmann H. “Infectious” transplantation tolerance. Science 259: 974–977, 1993PubMedCrossRefGoogle Scholar
  37. Reijsen FC van, Bruijnzeel-Koomen CAFM, Kalthoff FS, Maggi E, Romagnani S, Westland JKT, Mudde GC. Skin-derived aeroallergen-specific T cell clones of Th2 phenotype in patients with atopic dermatitis. J Allergy Clin Immunol 90: 184–192, 1992.PubMedCrossRefGoogle Scholar
  38. Reiner SL, Wang Z, Hatam F, Scott P,. Locksley RM. Th1 and Th2 cell antigen receptors in experimental Leishmaniasis. Science 259: 1457–1460, 1993.PubMedCrossRefGoogle Scholar
  39. Rocha B, Boehmer H von. Peripheral selection of the T cell repertoire. Science 251:1225–1231, 1991.PubMedCrossRefGoogle Scholar
  40. Romagnani S. Induction of Th1 and Th2 responses: a key role for the ’natural’ immune response? Immun Today 13, 10: 379–381, 1992.CrossRefGoogle Scholar
  41. Romagnoli P, Labhardt AM, Sinigaglia F. Selective interaction of Ni with MHC-bound peptide. EMBO J 10: 1303, 1991.PubMedGoogle Scholar
  42. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254:279–282, 1991.PubMedCrossRefGoogle Scholar
  43. Sayegh MH, Khoury SJ, Hancock WW, Weiner HL, Carpenter CB. Induction of immunity and oral tolerance with polymorphic calss II major histocompatibility complex allopeptides in the rat. Proc. Natl. Acad. Sci. USA 89: 7762–7766, 1992.PubMedCrossRefGoogle Scholar
  44. Scheper, RJ, Blomberg, BME von. Cellular mechanisms in allergic contact dermatitis. In: Rycroft RJG, Menne T, Frosch PJ and Benezra, C. (Eds.) Textbook of Contact Dermatitis, Springer-Verlag, Berlin, pp.11–28 (1992).Google Scholar
  45. Schönrich G, Kalinke U, Momburg F, Malissen M, Schmitt-Verhulst AM, Malissen B, Hämmerling GJ, Arnold B. Down-regulation of T cell receptors on Self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65: 293–304, 1991.PubMedCrossRefGoogle Scholar
  46. Scott P. IL-12: Initiation cytokine for cell-mediated immunity. Science 260: 496–497, 1993.PubMedCrossRefGoogle Scholar
  47. Sinigaglia, F, Scheidegger, D, Garotta, G, Scheper, RJ, Pletscher, M, Lanzavecchia, A; Isolation and characterization of Ni-specific T cell clones from patients with Ni-contact dermatitis. J Immunol 135: 3929–3933 (1985).PubMedGoogle Scholar
  48. Taub DD, Conlon K, Lloyd AR, Oppenheim JJ, Kelvin DJ. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1α and MIP-1ß. Science 260: 355–358, 1993.PubMedCrossRefGoogle Scholar
  49. Waal Malefyt R de, Yssel H, Roncarolog MG, Spits H, Vries JE de. Interleukin-10. Curr Opinion Immunol 4: 314–320, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Rik J. Scheper
    • 1
  • B. Mary
    • 1
  • E. von Blomberg
    • 1
  1. 1.Dept of PathologyFree University HospitalAmsterdamthe Netherlands

Personalised recommendations