Skip to main content

Positron Emission Tomography: Evaluation of Myocardial Blood Flow and Viability Before and Following Coronary Revascularization

  • Chapter

Abstract

Various noninvasive cardiac imaging modalities have been employed in patients who present with myocardial ischemia following coronary artery bypass grafting (CABG). The high frequency of multivessel disease makes accurate identification of graft or native vessel obstruction particularly challenging. The presence of graft or native vessel stenosis can be determined by coronary angiography, but noninvasive imaging techniques combined with stress testing are required to determine the functional significance of anatomic disease. Analysis of left ventricular wall motion during exercise or pharmacologic stress and assessment of perfusion by single photon emission computerized tomography (SPECT) are routinely employed for this purpose. SPECT has a high sensitivity for detection of coronary artery disease. However, it provides primarily qualitative information and has limited specificity because of imaging artifacts which may not be readily distinguished from true abnormalities of perfusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araujo L, Lammertsma A, Rhodes C et al. (1991) Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83: 875–885.

    PubMed  CAS  Google Scholar 

  2. Bates E, Aueron F, Legrand V et al. (1985) Comparative long-term effects of coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty on regional coronary flow reserve. Circulation 72: 833–839.

    Article  PubMed  CAS  Google Scholar 

  3. Beanlands R, Muzik O, Mintun M et al. (1992a) The kinetics of copper-62-PTSM in the normal human heart. J Nucl Med 33: 684–690.

    PubMed  CAS  Google Scholar 

  4. Beanlands R, Muzik O, Sutor R et al. (1992b) Noninvasive determination of regional perfusion reserve in coronary artery disease using N-13 ammonia PET. J Nucl Med 33: 826.

    Google Scholar 

  5. Bergmann S, Fox K, Rand A et al. (1984) Quantification of regional myocardial blood flow in vivo with O-15 water. Circulation 70: 724–733.

    Article  PubMed  CAS  Google Scholar 

  6. Bergmann S, Herrero P, Markham J, Winheimer C, Walsh M (1989) Noninvasive quantification of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14: 639–652.

    Article  PubMed  CAS  Google Scholar 

  7. Bonow R, Dilsizian V, Cuocolo A, Bacharach S (1991) Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 83: 26–37.

    PubMed  CAS  Google Scholar 

  8. Bourassa M (1991) Left ventricular function after coronary bypass surgery. In: Waters D, Bourassa M (eds) Care of the patient with previous coronary bypass surgery. Davis, Philadelphia, pp 227–237 (Cardiovascular clinics, vol 21).

    Google Scholar 

  9. Braunwald E, Kloner R (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66: 1146–1149.

    Article  PubMed  CAS  Google Scholar 

  10. Braunwald E, Rutherford J (1986) Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium.” J Am Coll Cardiol 8: 1467–1470.

    Article  PubMed  CAS  Google Scholar 

  11. Brunken R, Tillisch J, Schwaiger M et al. (1986) Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q Wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 73: 951–963.

    Article  PubMed  CAS  Google Scholar 

  12. Bruschke A, Proudfit W, Sones F (1973) Progress study of 590 consecutive nonsurgical cases of coronary disease followed 5–9 years. II. Ventriculographic and other considerations. Circulation 47: 1154–1163.

    PubMed  CAS  Google Scholar 

  13. Camici P, Araujo L, Spinks T et al. (1986) Increased uptake of F-18-deoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 74: 81–88.

    Article  PubMed  CAS  Google Scholar 

  14. Camici P, Chiriatti G, Lorenzoni R et al. (1991) Coronary vasodilation is impaired in both hypertrophied and non-hypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17: 879–886.

    Article  PubMed  CAS  Google Scholar 

  15. Carrier M, Perreault L, Pelletier L (1991) Reoperation for coronary bypass grafting. In: Waters D, Bourassa M (eds) Care of the patients with previous coronary bypass surgery. Davis, Philadelphia, pp 257–263 (Cardiovascular clinics, vol 21).

    Google Scholar 

  16. Czernin J, Porenta G, Brunken R et al. (1990) Oxidative and glycolytic metabolic tissue characterization in patients with acute infarction using dynamic PET. J Nucl Med 31: 774.

    Google Scholar 

  17. Demer L, Gould L, Goldstein R et al. (1989) Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 79: 825–835.

    Article  PubMed  CAS  Google Scholar 

  18. Eitzman D, Al-Aouar Z, Kanter H et al. (1992) Clinical outcome of patients with advanced coronary artery disease following positron emission tomography viablity studies. J Am Coll Cardiol (in press).

    Google Scholar 

  19. Foster E, Fisher L, Kaiser G (1984) Comparison of operative mortality and morbidity for initial and repeat coronary artery bypass grafting: the Coronary Artery Surgery Study (CASS) Registry experience. Ann Thorac Cardiovasc Surg 38: 563–569.

    CAS  Google Scholar 

  20. Fudo T, Kambara H, Hashimoto T et al. (1988) F-18 deoxyglucose and stress N-13 ammonia positron emission tomography in anterior wall healed myocardial infarction. Am J Cardiol 61: 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  21. Gallagher B, Fowler J, Gutterson N, Macgregor R, Wan C, Wolf A (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of F-18-2-deoxy-2-fluoro-D-glucose. J Nucl Med 19: 1154–1161.

    PubMed  CAS  Google Scholar 

  22. Geltman E, Henes C, Senneff M, Sobel B, Bergmann S (1990) Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 16: 586–595.

    Article  PubMed  CAS  Google Scholar 

  23. Go R, Marwick T, MacIntyre W et al. (1990) A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31: 1899–1905.

    PubMed  CAS  Google Scholar 

  24. Grondin C, Pomar J, Hebert Y et al. (1984) Reoperation in patients with patent atherosclerotic coronary vein grafts. A different approach to a different disease. J Thorac Cardiovasc Surg 87: 379–385.

    PubMed  CAS  Google Scholar 

  25. Gropler R, Geltman E, Sampathkumaran J et al. (1992) The superiority of cardiac PET with C-11 acetate for prediction of functional recovery after revascularization. J Nucl Med 5: 855.

    Google Scholar 

  26. Halama J, Gatley J, DeGrado T, Bernstein D, Ng C, Holden J (1984) Validation of 3-deoxy-3-fluoro-D-glucose as a glucose transport analog in rat heart. Am J Physiol 246: H754–H759.

    Google Scholar 

  27. Herrero P, Markham J, Shelton M, Weinheimer C, Bergmann S (1990) Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Circulation 82: 1377–1386.

    Article  PubMed  CAS  Google Scholar 

  28. Hutchins G, Schwaiger M, Rosenspire KJ, Krivokapich J, Schelbert H, Kuhl D (1990) Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15: 1032–1042.

    Article  PubMed  CAS  Google Scholar 

  29. Hutchins G, Schwaiger M, Wolfe E (1992) Quantitative evaluation of myocardial perfusion using positron emission tomography. Am J Cardiac Imaging (in press).

    Google Scholar 

  30. Kalff V, Schwaiger M, Nguyen N, McClanahan T, Gallagher K (1992) The relationship between myocardial blood flow and glucose uptake in ischemic canine myocardium determined with F-18 glucose. J Nucl Med (in press).

    Google Scholar 

  31. Knabb R, Bergmann S, Fox K, Sobel B (1987) The temporal pattern of recovery of myocardial perfusion and metabolism delineated by positron emission tomography after coronary thrombolysis. J Nucl Med 28: 1563–1570.

    PubMed  CAS  Google Scholar 

  32. Kolibash A, Lewis R, Goodenow J (1980) Extensive myocardial blood flow distribution through individual coronary artery bypass grafts. Chest 77: 17–23.

    Article  PubMed  CAS  Google Scholar 

  33. Krivokapich J, Huang S, Selin C, Phelps M (1987) Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 252: H777–H787.

    PubMed  CAS  Google Scholar 

  34. Krivokapich J, Smith G, Huang S et al. (1989) N-13 ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 80: 1328–1337.

    Article  PubMed  CAS  Google Scholar 

  35. Loop F, Lytle B, Gill C et al. (1983) Trends in selection and results of coronary reoperations. Ann Thorac Surg 36: 380–388.

    Article  PubMed  CAS  Google Scholar 

  36. Lytle B, Loop F, Cosgrove D et al. (1987) Fifteen hundred coronary reoperations: results and determinants of early and later survival. J Thorac Cardiovasc Surg 93: 847–859.

    PubMed  CAS  Google Scholar 

  37. Lytle B, Cosgrove D, Taylor P et al. (1989) Multiple coronary reoperations: early and late results. Circulation 89[Suppl II]: II–626.

    Google Scholar 

  38. Lytle B, Cosgrove D, Loop F (1991) Future implications of current trends in bypass surgery. In: Waters D, Bourassa M (eds) Care of the patient with previous coronary bypass surgery. Davis, Philadelphia, pp 265–278 (Cardiovascular clinics, vol 21).

    Google Scholar 

  39. Marshall R, Tillisch J, Phelps M (1983) Identification and differentiation of resting myocardial ischemia in man with positron computed tomography. F-18 labeled fluorodeoxyglucose and N-13 ammonia. Circulation 67: 766–778.

    Article  PubMed  CAS  Google Scholar 

  40. Marwick T, MacIntyre W, Lafont A, Nemec J, Salcedo E (1992) Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function and metabolism. Circulation 85: 1347–1353.

    PubMed  CAS  Google Scholar 

  41. Marwick T, Nemec J, Lafont A, Salcedo E, MacIntyre W (1992) Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol 69: 854–859.

    Article  PubMed  CAS  Google Scholar 

  42. McNamara J, Bjerke H, Chung G (1979) Blood flow in sequential vein grafts. Circulation 60[Suppl I]: 33.

    PubMed  CAS  Google Scholar 

  43. Miller D (1991) Evaluation of the patient with stable angina following coronary artery bypass surgery. In: Waters D, Bourassa M (eds) Care of the patient with previous coronary bypass surgery. Davis, Philadelphia, pp 137–167.

    Google Scholar 

  44. Movahed A, Reeves W, Rose G et al. (1990) Dobutamine and improvement of regional and global left ventricular function in coronary artery disease. Am J Cardiol 66: 375–377.

    Article  PubMed  CAS  Google Scholar 

  45. Muzik O, Beanlands R, Hutchins G et al. (1991) Experimental validation of a tracer kinetic model for N-13 ammonia in comparison to O-15 water for quantification of myocardial blood flow. J Nucl Med 32: 926.

    Google Scholar 

  46. Nienaber C, Brunken R, Sherman C et al. (1991) Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol 18: 966–978.

    Article  PubMed  CAS  Google Scholar 

  47. Pfisterer M, Emmenegger H, Schmitt E et al. (1982) Accuracy of serial myocardial perfusion scintigraphy with thallium-201 for prediction of graft patency early and late after coronary artery bypass surgery. Circulation 66: 1017–1024.

    Article  PubMed  CAS  Google Scholar 

  48. Pierard L, DeLandsheere C, Berthe C et al. (1990) Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 15: 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  49. Rahimtoola S (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 8: V–123–V–135.

    Google Scholar 

  50. Schelbert H, Wisenberg G, Phelps M et al. (1982) Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 49: 1197–1207.

    Article  PubMed  CAS  Google Scholar 

  51. Schwaiger M (1986) Metabolism and blood flow as new markers of myocardial viability in the evolution of myocardial infarction. Eur J Nucl Med 12: S 62–65.

    Google Scholar 

  52. Schwaiger M (1987) Beneficial effect of residual anterograde flow on tissue viability as assessed by positron emission tomography in patients with myocardial infarction. Eur Heart J 8: 981–988.

    PubMed  CAS  Google Scholar 

  53. Schwaiger M, Hicks R (1991) The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 32: 565–578.

    PubMed  CAS  Google Scholar 

  54. Schwaiger M, Schelbert H, Ellison D et al. (1985) Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 6: 336–347.

    Article  PubMed  CAS  Google Scholar 

  55. Schwaiger M, Brunken R, Grover-McKay M et al. (1986) Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 8: 800–808.

    Article  PubMed  CAS  Google Scholar 

  56. Smart S, Sawada S, Ryan T et al. (1990) Dobutamine echocardiography predicts recovery after thrombolysis in myocardial infarction. Circulation 82[Suppl III]: 75.

    Google Scholar 

  57. Sochor H, Schwaiger M, Schelbert H et al. (1987) Relationship between T1-201, Tc-99m (Sn) pyrophosphate and F-18 2-deoxyglucose uptake in ischemically injured dog myocardium. Am Heart J 114: 1066–1077.

    Article  PubMed  CAS  Google Scholar 

  58. Sorenson J, Phelps M (1987) Physics in nuclear medicine. Saunders, Philadelphia, pp 435–436.

    Google Scholar 

  59. Stewart R, Schwaiger M, Molina E et al. (1991) Comparison of rubidium-82 PET and thallium-201 SPECT imaging for the detection of coronary artery disease. Am J Cardiol 67: 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  60. Tamaki N, Yonekura Y, Yamashita K et al. (1989) Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64: 860–865.

    Article  PubMed  CAS  Google Scholar 

  61. Tamaki N, Ohtani H, Yamashita K et al. (1991) Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 32: 673–678.

    PubMed  CAS  Google Scholar 

  62. Tillisch J, Brunken R, Marshall R et al. (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314: 884–888.

    Article  PubMed  CAS  Google Scholar 

  63. Vogel R, Bates E, O’Neill W et al. (1984) Coronary flow reserve measured during cardiac catheterization. Arch Intern Med 144: 1773–1777.

    Article  PubMed  CAS  Google Scholar 

  64. vom Dahl J, Eitzman D, Al-Aouar Z et al. (1992) Relationship of regional function, perfusion and metabolism in patients with advanced coronary artery disease. Circulation (in review).

    Google Scholar 

  65. Walsh M, Bergmann S, Steele R et al. (1988) Delineation of impaired regional myocardial perfusion by positron emission tomography with O-15 water. Circulation 78: 612–620.

    Article  PubMed  CAS  Google Scholar 

  66. Waters D (1991) Myocardial infarction in patients with previous bypass surgery. In: Waters D, Bourassa M (eds) Care of the patient with previous coronary bypass surgery. Davis, Philadelphia, pp 193–209 (Cardiovascular clinics, vol 21).

    Google Scholar 

  67. White C, Wilson R, Marcus M (1988) Methods of measuring myocardial blood flow in humans. Prog Cardiovasc Dis 31: 79–84.

    Article  PubMed  CAS  Google Scholar 

  68. Wilson R, Marcus M, White C (1988) Effects of coronary bypass surgery and angioplasty on coronary blood flow and flow reserve. Prog Cardiovasc Dis 31: 95–114.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sawada, S.G., Schwaiger, M. (1994). Positron Emission Tomography: Evaluation of Myocardial Blood Flow and Viability Before and Following Coronary Revascularization. In: Lüscher, T.F., Turina, M., Braunwald, E. (eds) Coronary Artery Graft Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78637-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78637-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78639-6

  • Online ISBN: 978-3-642-78637-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics