Skip to main content

Molecular and Genetic Determinants of the Listeria monocytogenes Infectious Process

  • Chapter
Bacterial Pathogenesis of Plants and Animals

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 192))

Abstract

Listeria monocytogenes was first characterized in 1926 following an outbreak of listeriosis in laboratory animals (MURRAY et al. 1926). However, it was not until the 1980s that an unambiguous link was established between the human disease and the consumption of Listeria-contaminated foodstuffs (SCHLECH et al. 1983). Immunosuppressed individuals, pregnant women, foetuses and neonates are most susceptible to Listeria infection. Human listeriosis is characterized by a high mortality rate, with clinical features including meningitis or meningo-encephalitis, septicemia, abortion, and perinatal infections (GRAY and KILLINGER 1966). If diagnosed early, listeriosis can be successfully treated by the administration of high doses of antibiotics, most frequently ampicillin or penicillin, either alone or in combination with aminoglycosides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba H, Fujimoto S, Ozaki N (1982) Molecular cloning and sequencing of the gene for E. coli cAMP receptor protein. Nucl Acids Res 10: 1345–1361

    CAS  Google Scholar 

  • Allaoui A, Mounier J, Prevost MC, Sansonetti PJ, Parsot C (1992) icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intracellular spread. Mol Microbiol 6: 1605–1617

    PubMed  CAS  Google Scholar 

  • Beaman LV, Beaman BL (1990) Monoclonal antibodies demonstrate that superoxide dismutase contributes to protection of Nocardia asteroides within the intact host. Infect Immun 58: 3122–3128

    PubMed  CAS  Google Scholar 

  • Bernardini ML, Mounier J, D’Hauteville H, Coquis-Rondon M, Sansonetti PJ (1989) Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA 86: 3867–3871

    PubMed  CAS  Google Scholar 

  • Bielecki J, Youngman P, Connelly P, Portnoy DA (1990) Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345: 175–176

    PubMed  CAS  Google Scholar 

  • Bliska JB, Galan JE, Falkow S (1993) Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73: 903–920

    PubMed  CAS  Google Scholar 

  • Bohne J, Sokolivic Z, Goebel W (1994) Transcriptional regulation of prfA and prfA-regulated virulence genes in Listeria monocytogenes. Mol Microbiol 11: 1141–1150

    PubMed  CAS  Google Scholar 

  • Brehm K, Haas A, Goebel W, Kreft J (1992) A gene encoding a superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes. Gene 118: 121–125

    PubMed  CAS  Google Scholar 

  • Brundage RA, Smith GA, Camilli A, Theriot JA, Portnoy DA (1993) Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci USA 90: 11890–11894

    PubMed  CAS  Google Scholar 

  • Bubert A (1992) Structural and functional properties of the p60 proteins from different listeria species. J Bacteriol 174: 8166–8171

    PubMed  CAS  Google Scholar 

  • Camilli A, Tilney L, Portnoy D (1993) Dual roles of pIcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8: 143–157

    PubMed  CAS  Google Scholar 

  • Chakraborty T, Goebel W (1988) Recent developments in the study of virulence in Listeria monocytogenes. In: Goebel W (ed) Intracellular bacteria. Springer Berlin Heidelberg New York, pp 41–58 (Currenttopics in microbiologyand immunology, vol 138 )

    Google Scholar 

  • Chakraborty T, Leimeister-Wachter M, Domann E, Hartl M, Goebel W, Nichterlein T, Notermans S (1992) Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prf A gene. J Bacteriol 174: 568–574

    PubMed  CAS  Google Scholar 

  • Collins MD, Wallbanks S, Lane DJ, Shah J, Nietupski R, Smida J, Dorsch M, Stackebrandt E (1991) Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41: 240–246

    PubMed  CAS  Google Scholar 

  • Conlan JW, North RJ (1991) Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J Exp Med 174: 741–744

    PubMed  CAS  Google Scholar 

  • Conlan W, North R (1993) Neutrophil-mediated lysis of infected hepatocytes. ASM News 59: 563-567 Cooper RF, Dennis SM (1978) Further characterization of Listeria monocytogenes serotype 5. Can J Microbiol 24: 598–599

    Google Scholar 

  • Cossart P (1994) Listeria monocytogenes: strategies for entry and survival in cells and tissues. In: Russell D (ed) Baillere’s Clinical infectious Diseases, Strategies for intracellular survival of microbes. Bailliere Tindall Ltd, London (in press)

    Google Scholar 

  • Cossart P, Gicquel-Sanzey B (1982) Cloning and sequence of the crp gene of Escherichia coli K 12. Nucl Acids Res 10: 1363–1378

    PubMed  CAS  Google Scholar 

  • Cossart P, Mengaud J (1989) Listeria monocytogenes: a model system for the molecular study of intracellular parasitism. Mol Biol Med 6: 463–474

    PubMed  CAS  Google Scholar 

  • Cossart P, Kocks C (1994) The actin based motility of the intracellular pathogen Listeria monocytogenes. Mol Microbiol (in press)

    Google Scholar 

  • Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P (1989) Listeriolysin O is essential for the virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun 57: 3629–3636

    PubMed  CAS  Google Scholar 

  • d’Hauteville H, Sansonetti PJ (1992) Phosphorylation of IcsA by cAMP-dependent protein kinase and its effecton intracellular spread of Shigella flexneri. Mol Microbiol 6: 833–841

    PubMed  Google Scholar 

  • Dabiri GA, Sanger JM, Portnoy DA, Southwick FS (1990) Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci USA 87: 6068–6072

    PubMed  CAS  Google Scholar 

  • Domann E, Leimeister-Wachter M, Goebel W, Chakraborty T (1991) Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene. Infect Immun 59: 65–72

    PubMed  CAS  Google Scholar 

  • Domann E, Wehland J, Rohde M, Pistor S, Hartl M, Goebel W, Leimeister-Wächter M, Wuenscher M, Chakraborty T (1992) A novel bacterial gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J 11: 1981–1990

    PubMed  CAS  Google Scholar 

  • Dons L, Rasmussen OF, Olsen JE (1992) Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes. Mol Microbiol 6: 2919–2929

    PubMed  CAS  Google Scholar 

  • Dramsi S, Dehoux P, Cossart P (1993a) Common features of Gram-positive bacterial proteins involved in cell recognition. Mol Microbiol 9: 1119–1122

    PubMed  CAS  Google Scholar 

  • Dramsi S, Kocks C, Forestier C, Cossart P (1993b) Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator, prfA. Mol Microbiol 9: 931–941

    PubMed  CAS  Google Scholar 

  • Drevets D, Campbell PA (1991) Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse macrophages. Infect Immun 59: 2645–2652

    PubMed  CAS  Google Scholar 

  • Drevets D, Canono BP, Campbell PA (1992) Listericidal and nonlistericidal mouse macrophages differ in complement receptor type3-mediated phagocytosis of L. mono-cytogenes and in preventing escape of the bacteria into the cytoplasm. J Leukoc Biol 52: 70–79

    PubMed  CAS  Google Scholar 

  • Eaton DA, Morgan DR, Krakowka S (1992) Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori. J Med Microbiol 37: 123–127

    PubMed  CAS  Google Scholar 

  • Falkow S, Isberg RR, Portnoy DA (1992) The interaction of bacteria with mammalian cells. Annu Rev Cell Biol 8: 333–363

    PubMed  CAS  Google Scholar 

  • Fischetti VA, Pancholi V, Schneewind O (1990) Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol 4: 1603–1605

    PubMed  CAS  Google Scholar 

  • Formal SB, Gemski J, Baron LS, LaBrec EH (1971) A chromosomal locus which controls the ability of Shigella flexneri to evoke keratoconjuctivitis. Infect Immun 3: 73–79

    PubMed  CAS  Google Scholar 

  • Franzon VL, Arondel J, Sansonetti PJ (1990) Contribution of superoxide dismutase and catalase to Shigella flexneri pathogenesis. Infect Immun 58: 529–535

    PubMed  CAS  Google Scholar 

  • Freitag NE, Portnoy DA (1994) Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol Microbiol 12: 845–853

    PubMed  CAS  Google Scholar 

  • Freitag NE, Youngman P, Portnoy DA (1992) Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J Bacteriol 174: 1293–1298

    PubMed  CAS  Google Scholar 

  • Freitag NE, Rong L, Portnoy DA (1993) Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61: 2537–2544

    PubMed  CAS  Google Scholar 

  • Fuzi M, Pillis I (1962) Production of opacity in egg-yolk medium by Listeria monocytogenes. Nature 13: 195

    Google Scholar 

  • Gaillard JL, Berche P, Sansonetti P (1986) Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52: 50–55

    PubMed  CAS  Google Scholar 

  • Gaillard JL, Berche P, Mounier J, Richard S, Sansonetti PJ (1987) In vitro model of penetration and intracellular growth of L. monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55: 2822–2829

    PubMed  CAS  Google Scholar 

  • Gaillard J-L, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65: 1127–1141

    PubMed  CAS  Google Scholar 

  • Garcia del Portillo F, Sanchez-Campillo M, Baquero F, Perez-Diaz JC (1992) New genes of Listeria monocytogenes presumptively related with enteric pathogenicity. In: Witholt B, Alouf JE, Boulnois GJ, Cossart P, Dijkstra BW, Falmagne P, Fehrenbach FJ, Freer J, Niemann H, Rappuoli R, Wadstrom T (eds) Bacterial protein toxins, 5th European workshop. Fischer, Stuttgart, pp 500–505

    Google Scholar 

  • Geoffroy C, Gaillard JL, Alouf JE, Berche P (1987) Purification, characterization and toxicity of the sulfhydryl-activated hemolysin listeriolysin 0 from Listeria monocytogenes. Infect Immun 55: 1641–1646

    PubMed  CAS  Google Scholar 

  • Geoffroy C, Gaillard JL, Alouf J, Berche P (1989) Production of thiol-dependent hemolysins by Listeria monocytogenes and related species. J Gen Microbiol 135: 481–487

    PubMed  CAS  Google Scholar 

  • Geoffroy C, Raveneau J, Beretti JL, Lecroisey A, Vazquez-Boland JA, Alouf JE, Berche P (1991) Purification and characterization of an extracellular 29-Kilodalton phospholipase C from L. monocytogenes. Infect Immun 59: 2382–2388

    PubMed  CAS  Google Scholar 

  • Goebel W, Kreft J, Bohne J, Demuth A, Kestler H, Sokolovic Z (1994) Regulation of cytolysins and other virulence factors in Listeria monocytogenes. In: Freer F et al. (eds) Bacterial protein toxins. Fischer, Stuttgart, pp 138–145 (ZbL Bakt Suppl 24 )

    Google Scholar 

  • Goldberg MB, Barzu O, Parsot C, Sansonetti PJ (1993) Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J Bacteriol 175: 2189–2196

    PubMed  CAS  Google Scholar 

  • Goldfine H, Knob C (1992) Purification and characterization of Listeria monocytogenes phosphatidylinositol-specific phospholipase C. Infect Immun 60: 4059–4067

    PubMed  CAS  Google Scholar 

  • Goldfine H, Johnston NC, Knob C (1993) The non-specific phospholipase C of Listeria monocytogenes: activity on phospholipids in triton X-100 mixed micelles and in biological membranes. J Bacteriol 175: 4298–4306

    PubMed  CAS  Google Scholar 

  • Goossens PL, Milon G (1992) Induction of protective CD8+ T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int Immunol 4: 1413–1418

    PubMed  CAS  Google Scholar 

  • Gormley E, Mengaud J, Cossart P (1989) Sequences homologous to the Listeriolysin O gene region of Listeria monocytogenes are present in virulent and avirulent haemolytic species of the genus Listeria. Res Microbiol 140: 631–643

    PubMed  CAS  Google Scholar 

  • Gouin E, Mengaud J, Cossart P (1994) The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligen, a non-pathogenic species. Infect immun (in press)

    Google Scholar 

  • Gray ML, Killinger AH (1966) Listeria monocytogenes and listeric infections. Bacteriol Rev 30: 309–382

    PubMed  CAS  Google Scholar 

  • Haas A, Brehm K, Kreft J, Goebel W (1991) Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases. J Bacteriol 173: 5159–5167

    PubMed  CAS  Google Scholar 

  • Haas A, Dumbsky M, Kreft J (1992) Listeriolysin genes: complete sequence of ilo from Listeria ivanovii and Listeria seeligeri. Biochim Biophys Acta 1130: 81–84

    PubMed  CAS  Google Scholar 

  • Hahn H, Kaufmann SHE (1981) The role of cell mediated immunity in bacterial infections. Rev Infect Dis 3: 1221–1250

    PubMed  CAS  Google Scholar 

  • Havell EA (1986) Synthesis and secretion of interferon by murine fibroblasts in response to intracellular Listeria monocytogenes. Infect Immun 54: 787–792

    PubMed  CAS  Google Scholar 

  • Heinzen RA, Hayes SF, Peacock MG, Hackstadt T (1993) Directional actin polymerization associated with spotted fever group Rickettsia infection of vero cells. Infect Immun 61: 1926–1935

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67–113

    PubMed  CAS  Google Scholar 

  • High N, Mounier J, Prévost MC, Sansonetti PJ (1992) IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J 11: 1991–1999

    PubMed  CAS  Google Scholar 

  • Irvine AS, Guest JR (1993) Lactobacillus casei contains a member of the CRP-FNR family. Nucl Acids Res 21: 753

    PubMed  CAS  Google Scholar 

  • Jones D (1992) Current classification of the genus Listeria Conference proceedings, Listeria 1992. The 11th international symposium on problems of Listeriosis, Copenhagen, p 2

    Google Scholar 

  • Karunasagar I, Krohne G, Goebel W (1993) Listeria ivanovii is capable of cell-to-cell spread involving actin polymerization. Infect Immun 61: 162–169

    PubMed  CAS  Google Scholar 

  • Kathariou S, Rocourt J, Hof H, Geobel W (1988) Levels of Listeria monocytogenes hemolysin are not directly proportional to virulence in experimental infections of mice. Infect Immun 56: 534–536

    PubMed  CAS  Google Scholar 

  • Kathariou S, Pine VG, Carlone GM, Holloway BP (1990) Nonhemolytic Listeria mono-cytogenes mutants that are also noninvasive for mammalian cells in culture: evidence for coordinate regulation of virulence. Infect Immun 58: 3988–3995

    PubMed  CAS  Google Scholar 

  • Kaufmann SHE (1993) Immunity to intracellular bacteria. Annu Rev Immunol 11: 129–163

    PubMed  CAS  Google Scholar 

  • Klarsfeld AD, Goossens PL, Cossart P (1994) Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: pIcA, purH, purD, purE, and an arginine ABC transporter gene, arpJ. Mol Microbiol 13 (in press)

    Google Scholar 

  • Klier A, Msadek T, Rapoport G (1992) Positive regulation in the Gram-positive bacterium: Bacillus subtilis. Ann Rev Microbiol 46: 429–459

    CAS  Google Scholar 

  • Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992) Listeria mono-cytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68: 521–531

    PubMed  CAS  Google Scholar 

  • Kocks C, Hellio R, Gounon P, Ohayon H, Cossart P (1993) Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J Cell Sei 105: 699–710

    CAS  Google Scholar 

  • Köhler S, Leimeister-Wächter M, Chakraborty T, Lottspeich F, Goebel W (1990) The gene coding for protein p60 of Listeria monocytogenes and its use an a specific probe for Listeria monocytogenes. Infect Immun 58: 1943–1950

    PubMed  Google Scholar 

  • Köhler S, Bubert A, Vogel M, Goebel W (1991) Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level. J Bacteriol 173: 4668–4674

    PubMed  Google Scholar 

  • Kuhn M, Goebel W (1989) Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun 57: 55–61

    PubMed  CAS  Google Scholar 

  • Kuhn M, Kathariou S, Goebel W (1988) Hemolysin supports survival but not entry of the intracellular bacterium Listeria monocytogenes. Infect Immun 56: 79–82

    PubMed  CAS  Google Scholar 

  • Kuhn M, Prévost M-C, Mounier J, Sansonetti PJ (1990) A nonvirulent mutant of Listeria monocytogenes does not move intracellularly but still induces polymerization of actin. Infect Immun 58: 3477–3486

    PubMed  CAS  Google Scholar 

  • Lampidid R, Gross R, Sokolovic Z, Goebel W, Kreft J (1994) The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol Microbiol 13: 141–151

    Google Scholar 

  • Leblond-Francillard M, Gaillard J-L, Berche P (1989) Loss of catalase activity in Tn1545-induced mutants does not reduce growth of Listeria monocytogenes in vivo. Infect Immun 57: 2569–2573

    PubMed  CAS  Google Scholar 

  • Leimeister-Wachter M, Chakraborty T (1989) Detection of listeriolysin, the thiol-dependent hemolysin in Listeria monocytogenes, Listeria ivanovii and Listeria seeligeri. Infect Immun 57: 2350–2357

    PubMed  CAS  Google Scholar 

  • Leimeister-Wachter M, Goebel W, Chakraborty T (1989) Mutations affecting hemolysin production in Listeria monocytogenes located outside the listeriolysin gene. FEMS Microbiol Lett 65: 23–30

    Google Scholar 

  • Leimeister-Wachter M, Haffner C, Domann E, Goebel W, Chakraborty T (1990) Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc Natl Acad Sci USA 87: 8336–8340

    PubMed  CAS  Google Scholar 

  • Leimeister-Wachter M, Domann E, Chakraborty T (1991) Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is coordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5: 361–366

    PubMed  CAS  Google Scholar 

  • Leimeister-Wachter M, Domann E, Chakraborty T (1992) The expression of virulence genes in L. monocytogenes is thermoregulated. J Bacteriol 174: 947–952

    PubMed  CAS  Google Scholar 

  • Lett M-C, Sasakawa C, Okada N, Sakai T, Makino S, Yamada M, Komatsu K, Yoshikawa M (1989) virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol 171: 353–359

    Google Scholar 

  • Lindberg AA, Karnell A, Stocker BAD, Katakura S, Sweiha H, Reinholt FP (1988) Development of an auxotrophic oral live Shigella flexneri vaccine. Vaccine 6: 146–150

    PubMed  CAS  Google Scholar 

  • Liu S-L, Ezaki T, Miura H, Matsui K and Yabuuchi E (1988) Intact motility as a Salmonella typhi virulencerelated factor. Infect Immun 56: 1967–1973

    PubMed  CAS  Google Scholar 

  • MacDonald TT, Carter PB (1980) Cell-mediated immunity to intestinal infection. Infect Immun 28: 516–523

    PubMed  CAS  Google Scholar 

  • Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116: 381–406

    PubMed  CAS  Google Scholar 

  • Marco AJ, Prats N, Ramos JA, Briones V, Blanco M, Dominguez L, Domingo M (1992) A microbiological, histopathological and immunohistological study of the intragastric inoculation of L. monocytogenes in mice. J Comp Pathol 107: 1–9

    PubMed  CAS  Google Scholar 

  • Marquis H, Bouwer HA, Hinrichs D, Portnoy D (1993) Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect Immun 61: 3756–3760

    PubMed  CAS  Google Scholar 

  • Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174: 1–7

    PubMed  CAS  Google Scholar 

  • Mengaud J, Vicente MF, Cossart P (1989) Transcriptional mapping and nucleotide sequences of the Listeria monocytogenes hlyA region reveal structural features that may be involved in regulation. Infect Immun 57: 3695–3701

    PubMed  CAS  Google Scholar 

  • Mengaud J, Braun-Breton C, Cossart P (1991a) Identification of a phosphatidylinositol-specific phospholipase C in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol 5: 367–372

    PubMed  CAS  Google Scholar 

  • Mengaud J, Dramsi S, Gouin E, Vazquez-Boland JA, Milon G, Cossart P (1991b) Pleiotropic control of Listeria monocytogenes virulence factors by a gene which is autoregulated. Mol Microbiol 5: 2273–2283

    PubMed  CAS  Google Scholar 

  • Mengaud J, Geoffroy C, Cossart P (1991c) Identification of a novel operon involved in virulence of Listeria monocytogenes: its first gene encodes a protein homologous to bacterial metalloproteases. Infect Immun 59: 1043–1049

    PubMed  CAS  Google Scholar 

  • Michel E, Cossart P (1992) Physical map of the Listeria monocytogenes chromosome. J Bacteriol 174: 7098–7103

    PubMed  CAS  Google Scholar 

  • Michel E, Reich KA, Favier R, Berche P, Cossart P (1990) Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino-acid substitutions in listeriolysin O. Mol Microbiol 4: 2167–2178

    PubMed  CAS  Google Scholar 

  • Mounier J, Ryter A, Coquis-Rondon M, Sansonetti PJ (1990) Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocyte-like cell line Caco-2. Infect Immun 58: 1048–1058

    PubMed  CAS  Google Scholar 

  • Murray EGD, Webb RE, Swann MBR (1926) A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J Pathol Bacteriol 29: 407–439

    Google Scholar 

  • Niebuhr K, Chakraborty T, Kollner P, Wehland J (1993) Production of Monoclonal antibodies to the phosphatidyl choline-specific phospholipase C of Listeria monocytogenes, a virulence factor for this species. Med Microbiol Lett 2: 9–16

    CAS  Google Scholar 

  • Park SF, Kroll RG (1993) Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol 8: 653–661

    PubMed  CAS  Google Scholar 

  • Parkinson JS (1993) Signal transduction schemes of bacteria. Cell 73: 857–871

    PubMed  CAS  Google Scholar 

  • Pistor S, Chakraborty T, Niebuhr K, Domann E, Wehland J (1994) The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton. EMBO J 13: 758–763

    PubMed  CAS  Google Scholar 

  • Portnoy DA (1992) Innate immunity to a facultative intracellular bacterial pathogen. Curr Opin Immunol 4: 20–24

    PubMed  CAS  Google Scholar 

  • Portnoy D, Jacks PS, Hinrichs D (1988) Role of hemolysin for the intracellular growth of L. monocytogenes. J Exp Med 167: 1459–1471

    PubMed  CAS  Google Scholar 

  • Portnoy DA, Chakraborty T, Goebel W, Cossart P (1992a) Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun 60: 1263–1267

    PubMed  CAS  Google Scholar 

  • Portnoy DA, Tweten R, Kehoe M, Bielecki J (1992b) Capacity of listeriolysin, streptolysin O and perfringolysin 0 to mediate growth of Bacillus subtilis within mammalian cells. Infect Immun 60: 2710–2717

    PubMed  CAS  Google Scholar 

  • Poyart C, Abachin E, Razafimanantsoa I, Berche P (1993) The Zinc Metalloprotease of Listeria monocytogenes is required for maturation of Phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun 61: 1576–1580

    PubMed  CAS  Google Scholar 

  • Racz P, Tenner K, Szivessy K (1970) Electron microscopic studies in experimental keratoconjunctivitis listeriosa. I. Penetration of Listeria monocytogenes into corneal epithelial cells. Acta Microbiol Acad Sci Hung 17: 221–236

    PubMed  CAS  Google Scholar 

  • Racz P, Tenner K, Mero E (1972) Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental Listeria infection. Lab Invest 26: 694–700

    PubMed  CAS  Google Scholar 

  • Racz P, Kaiserling E, Tenner K, Wuthe HH (1973) Experimental Listeria cystitis. II. Further evidence of the epithelial phase in experimental Listeria infection. An electron microscopic study. Virchows Arch [B] 13: 24–37

    CAS  Google Scholar 

  • Raveneau J, Geoffroy C, Beretti JL, Gaillard JL, Alouf JE, Berche P (1992) Reduced virulence of a Listeria monocytogenes phospholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect lmmun 60: 916–921

    CAS  Google Scholar 

  • Richardson K (1991) Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: Analysis of motility mutants in three animal models. Infect Immun 59: 2727–2736

    PubMed  CAS  Google Scholar 

  • Rosen H, Gordon S, North RJ (1989) Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J Exp Med 170: 27–37

    PubMed  CAS  Google Scholar 

  • Ruhland GJ, Hellwig M, Wanner G, Fiedler F (1993) Cell-surface location of Listeria-specific protein p60- detection of Listeria cells by indirect immunofluorescence. J Gen Microbiol 139: 609–616

    PubMed  CAS  Google Scholar 

  • Sanger JM, Sanger JW, Southwick FS (1992) Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect Immun 60: 3609–3619

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ (1992) Molecular and cellular biology of Shigella flexneri invasivness In: Sansonetti PJ (ed) Pathogenesis of Shigellosis. Springer, Berlin Heidelberg New York, pp 1–20 (Current topics in microbiology and immunology, vol 180)

    Google Scholar 

  • Sansonetti PJ, Ryter A, Clerc P, Maurelli AT, Mounier J (1986) Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun 51: 461–469

    PubMed  CAS  Google Scholar 

  • Schlech WF III, Lavigne PM, Bortolussi RA, Allen AC, Haldane VE, Wort JA, Hightower AW, Johnson SE, King SH, Nicholls ES, Broome C (1983) Epidemic listeriosis-evidence for transmission by food. N Engl J Med 308: 203–206

    PubMed  Google Scholar 

  • Silverman DJ, Santucci LA, Meyers N, Sekeyova Z (1992) Penetration of host cells by Rickettsia rickettsii appears to be mediated by a phospholipase of Rickettsial origin. Infect Immun 60: 2733–2740

    PubMed  CAS  Google Scholar 

  • Smyth CJ, Duncan JL (1978) Thiol-activated (oxygen labile) cytolysins. In: Jeljaszewicz J, Wadstrom T (eds) Bacterial toxins and cell membranes. Academic, New York

    Google Scholar 

  • Sokolovic Z, Goebel W (1989) Synthesis of listeriolysin in Listeria monocytogenes under heat shock conditions. Infect Immun 57: 295–298

    PubMed  CAS  Google Scholar 

  • Sokolovic Z, Fuchs A, Goebel W (1990) Synthesis of species-specific stress proteins by virulent strains of Listeria monocytogenes. Infect Immun 58: 3582–3587

    PubMed  CAS  Google Scholar 

  • Sokolovic Z, Riedel J, Wuenscher M, Goebel W (1993) Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol Microbiol 8: 219–227

    PubMed  CAS  Google Scholar 

  • Southwick FS, Purich DL (1994) Arrest of Listeria movement in host cells by a bacterial ActA analogue: Implications for actin-based motility. Proc Natl Acad Sci USA 91: 5168–5172

    PubMed  CAS  Google Scholar 

  • Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490

    PubMed  CAS  Google Scholar 

  • Stock JB, Stock AM, Mottonen J (1990) Signal transduction in bacteria. Nature 344: 395–400

    PubMed  CAS  Google Scholar 

  • Sun AN, Camilli A, Portnoy DA (1990) Isolation of Listeria monocytogenes small-plaque mutants defective in intracellular growth and cell-to-cell spread. Infect Immun 58: 3770–3778

    PubMed  CAS  Google Scholar 

  • Teysseire N, Chiche-Portiche C, Raoult D (1992) Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res Microbiol 143: 821–829

    PubMed  CAS  Google Scholar 

  • Theriot J, Mitchison TJ (1992) The nucleation-release model of actin filament dynamics in cell motility. Trends Cell Biol 2: 219–222

    PubMed  CAS  Google Scholar 

  • Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA (1992) The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357: 257–260

    PubMed  CAS  Google Scholar 

  • Theriot JA, Rosenblatt J, Portnoy DA, Goldschmidt-Clermont PJ, Mitchison TJ (1994) Involvement of profilin in the actin-based motility of Listeria monocytogenes in cells and cell-free extracts. Cell 76: 505–517

    PubMed  CAS  Google Scholar 

  • Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109: 1597–1608

    PubMed  CAS  Google Scholar 

  • Tilney LG, Tilney MS (1993) The wily ways of a parasite: induction of actin assembly by Listeria. Trends Microbiol 1: 25–31

    PubMed  CAS  Google Scholar 

  • Vancompernolle K, Goethals M, Huet C, Louvard D, Vandekerckhove J (1992) G-to F-actin modulation by a single amino acid substitution in the actin binding site of actobindin and thymosin p4. EMBO J 11: 4739–4746

    PubMed  CAS  Google Scholar 

  • Vazquez-Boland J-A, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60: 219–230

    PubMed  CAS  Google Scholar 

  • Vega-Palas MA, Flores E, Herrero A (1992) NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6: 1853–1859

    PubMed  CAS  Google Scholar 

  • Vicente MF, Baquero F, Perez-Diaz JC (1989) Molecular cloning of the Listeria monocytogenes DNA fragment presenting strong hybridization with V. cholerae toxin genes. In: Rappuoli R, Alouf JE, Falmagne P, Fehrenbach FJ, Freer J, Gross R, Jeljaszewicz J, Montecucco C, Tomasi M, Wadstrom T, Witholt B (eds) Bacterial protein toxins, 4th European workshop. Fischer, Stuttgart, pp 353–355

    Google Scholar 

  • Westerlund B, Korhonen TK (1993) Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol 9: 687–694

    PubMed  CAS  Google Scholar 

  • Winkler HH (1990) Rickettsia Species (as organisms). Annu Rev Microbiol 44: 131–153

    PubMed  CAS  Google Scholar 

  • Wren BW, Colby SM, Cubberley RR, Pallen MJ (1992) Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett 99: 287–292

    CAS  Google Scholar 

  • Wuenscher M, Kohler S, Bubert A, Gerike U, Goebel W (1993) The iap gene of Listeria monocytogenes is essential for cell viability and its gene product, p60, has bacteriolytic activity. J Bacteriol 175: 3491–3501

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sheehan, B. et al. (1994). Molecular and Genetic Determinants of the Listeria monocytogenes Infectious Process. In: Dangl, J.L. (eds) Bacterial Pathogenesis of Plants and Animals. Current Topics in Microbiology and Immunology, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78624-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78624-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78626-6

  • Online ISBN: 978-3-642-78624-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics