Biology of the Pathogenic Neisseriae

  • T. F. Meyer
  • J. Pohlner
  • J. P. M. van Putten
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 192)

Abstract

N. gonorrhoeae and N. meningitidis, the causative agents of gonorrhoea and meningitis, were discovered in 1879 and 1887 by Albert Neisser (gonococci) and Anton Weiehselbaum (meningococci), respectively, although the disease gonorrhoea had been recognized since antiquity. The Neisseriae are gramnegative bacteria usually diplococcal in shape. They include a wide variety of commensal species and two pathogenic species. Meningococci and gonococci, as well as some of their commensal relatives, only infect humans as their natural host. They represent typical mucosal colonizers. While localized infections with N. meningitidis (e.g., of the nasopharynx) of normal human individuals occur frequently and are usually asymptomatic, reminiscent of the mucosal colonization by commensal Neisseria species, under rare, as yet undefined, conditions pathogenic Neisseria disseminate to cause life-threatening or other severe diseases including meningitis, bacteremia, pelvic inflammatory disease (PID) and septic arthritis.

Keywords

Carbohydrate Adenocarcinoma Superoxide Tuberculosis Polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achtman M (1994) Clonal spread of serogroup A meningococci. A paradigm for the analysis of microevolution in bacteria. Mol Microbiol 11: 15–22PubMedGoogle Scholar
  2. Aho EL, Murphy GL, Cannon JG (1987) Distribution of specific DNA sequences among pathogenic and commensal Neisseria species. Infect Immun 55: 1009–1013PubMedGoogle Scholar
  3. Aldea M, Garrido T, Hernandez-Chico C, Vicente M, Kushner SR (1989) Induction of a growth phasedependent promotor triggers transcription of bopA, and Escherichia coli morphogene. EMBO J 8: 3923–3931PubMedGoogle Scholar
  4. Arakare G, Kessel M, Nguyen N, Frasch CE (1993) Characterization of a stress protein from group B Neisseria meningitidis. J Bacteriol 175: 3664–366Google Scholar
  5. Archibald FS, Duong M-N (1986) Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun 51: 631–641PubMedGoogle Scholar
  6. Arko RJ (1974) An immunological model in laboratory animals for the study of Neisseria gonorrhoeae. J Infect Dis 129: 451–455PubMedGoogle Scholar
  7. Arko RJ (1989) Animal models for pathogenic Neisseria species. Clin Microbiol Rev 2: S56–59PubMedGoogle Scholar
  8. Bachovchin WW, Plaut AG, Flentke GR, Lynch M, Kettner CA (1990) Inhibition of lgA1 proteinases from Neisseria gonorrhoeae and Haemophilus influenzae by peptide prolyl boronic acids. J Biol Chem 265: 3738–3743PubMedGoogle Scholar
  9. Barlow AK, Heckeis JE, Clarke IN (1989) The class 1 outer membrane protein of Neisseria meningitidis: cloning and structure of the gene. Gene 105: 125–128Google Scholar
  10. Barritt DS, Schwalbe RS, Klapper DG, Cannon JG (1987) Antigenic and structural differences among six proteins II expressed by a single strain of Neisseria gonorrhoeae. Infect Immun 55: 2026–2031PubMedGoogle Scholar
  11. Belland RJ, Chen T, Swanson J, Fischer SH (1992) Human neutrophil response to recombinant neisserial Opa proteins. Mol Microbiol 6: 1729–1737PubMedGoogle Scholar
  12. Benkirane R, Guinet R, Delaunay T (1992) Purification and immunologial studies of the cross-reaction between the 65-kilodalton gonococcal parietal lectin and an antigen common to a wide range of bacteria. Infect Immun 60: 3468–3471PubMedGoogle Scholar
  13. Berish SA, Mietzner TA, Maye LW, Genco CA, Holloway BP, Morse SA (1990) Molecular cloning and characterization of the structural gene for the major iron-regulated protein expressed by Neisseria gonorrhoeae. J Exp Med 171: 1535–1546PubMedGoogle Scholar
  14. Berish SA, Chen C-Y, Mietzner TA, Morse SA (1992) Expression of a functional neisserial fbp gene in Escherichia coli. Mol Microbiol 6: 2607–2615PubMedGoogle Scholar
  15. Berish SA, Subbarao S, Chen C-Y, Trees DL, Morse SA (1993) Identification and cloning of a fur homolog from Neisseria gonorrhoeae. Infect Immun 61: 4599–4606PubMedGoogle Scholar
  16. Bessen D, Gotschlich EC (1986) Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration, and the role of protein II. Infect Immun 54: 154–160PubMedGoogle Scholar
  17. Bessen D, Gotschlich EC (1987) Chemical characterization of binding properties of opacity-associated protein II from Neisseria gonorrhoeae. Infect Immun 55: 141–147PubMedGoogle Scholar
  18. Bhat KS, Gibbs CP, Barrera O, Morrison SG, Jähnig F, Stern A, Kupsch EM, Meyer TF, Swanson J (1991) The repertoire of opacity proteins displayed by Neisseria gonorrhoeae MS 11 outer surface are encoded by a family of 11 complete genes. Mol Microbiol 5: 1889–1901;PubMedGoogle Scholar
  19. Bhat KS, Gibbs CP, Barrera O, Morrison SG, Jähnig F, Stern A, Kupsch EM, Meyer TF, Swanson J, Corrigendum (1992) 6: 1073–1076Google Scholar
  20. Bihlmaier A, Römling U, Meyer TF, Tümmler B, Gibbs CP (1991) Physical and genetic map of the Neisseria gonorrhoeae strain MS11-N178 chromosome. Mol Microbiol 5: 2529–2539Google Scholar
  21. Biswas GD, Burnstein KL, Sparling PF (1986) Linearization of donor DNA during plasmid transformation in Neisseria gonorrhoeae. J Bacteriol 168: 756–761PubMedGoogle Scholar
  22. Biswas GD, Lacks SA, Sparling PF (1989) Transformation-deficient mutants of piliated Neisseria gonorrhoeae. J Bacteriol 171: 657–664PubMedGoogle Scholar
  23. Blake MS (1985) Functions of outer membrane proteins of Neisseria gonorrhoeae. In: Jackson GG, Thomas H (ed) The pathogenesis of bacterial infections. Springer, Berlin Heidelberg New York, pp 51–66Google Scholar
  24. Boxberger HJ, Sessler MJ, Maetzel B, Meyer TF (1993) Highly polarized primary epithelial cells from human nasopharynx grown as spheroid-like vesicles. Eur J Cell Biol 62: 140–151PubMedGoogle Scholar
  25. Braun V (1985) The unusual features of the iron transport systems of Escherichia coli. TIBS 10: 75–78Google Scholar
  26. Brener D, DeVoe IW, Holbein BE (1981) Increased virulence of Neisseria meningitidis after in vitro iron limited growth at low pH. Infect Immun 33: 59–66PubMedGoogle Scholar
  27. Britigan BE, Klapper D, Svendsen T, Cohen MS (1988) Phagocyte-derived lactate stimulates oxygen consumption by Neisseria gonorrhoeae. J Clin Invest 81: 318–324PubMedGoogle Scholar
  28. Broome CV (1986) The carrier state: Neisseria meningitidis. J Antimicrob Chemother 18A: 25–34PubMedGoogle Scholar
  29. Cannon JG (1989) Conserved lipoproteins of pathogenic Neisseria species bearing the H.8 epitope: Lipid-modified azurin and H.8 outer membrane protein. Clin Microbiol Rev 2: S1–S4PubMedGoogle Scholar
  30. Casey SG, Shafer WM, Spitznagel JK (1985) Anaerobiosis increases resistance of Neisseria gonorrhoeae to 02-independent antimicrobial proteins from human polymorphonuclear granulocytes. Infect Immun 47: 401–407PubMedGoogle Scholar
  31. Catlin BW, Cunningham LS (1961) Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol 26: 303–312PubMedGoogle Scholar
  32. Chen C-Y, Berish SA, Morse SA, Mietzner TA (1993) The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition for human transferrin. Mol Microbiol 10: 311–318PubMedGoogle Scholar
  33. Chen JCR, Bavoil P, Clark VL (1991) Enhancement of the invasive ability of Neisseria gonorrhoeae by contact with HeclB, an adenocarcinoma endometrial cell line. Mol Microbiol 5: 1531–1538PubMedGoogle Scholar
  34. Clark VL, Campbell LA, Palermo DA, Evans TE, Klimpel KW (1987) Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae. Infect Immun 55: 1359–1364PubMedGoogle Scholar
  35. Clark VL, Knapp JS, Thompson S, Klimpel KW (1988) Presence of antibodies to the major anaerobically induced outer membrane protein in sera from patients with gonococcal infection. Microb Pathog 5: 381–390PubMedGoogle Scholar
  36. Cohen MS, Cooney MH (1984) A bacterial respiratory burst: stimulation of the metabolism of Neisseria gonorrhoeae by human serum. J Infect Dis 150: 49–56PubMedGoogle Scholar
  37. Connell TD, Black WJ, Kawula TH, Barritt DS, Dempsey JA, Kverneland K, Stephenson A, Schepart BS, Murphy GL, Cannon JG (1988) Recombination among 11 genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein I family. Mol Microbiol 2: 227–236PubMedGoogle Scholar
  38. Cooper MD, McGee ZA, Mulks MH, Koomey JM, Hindman TL (1984) Attachment to and invasion of human fallopian tube mucosa by an lgA1 protease-deficient mutant of Neisseria gonorrhoeae and its wild-type parent. J Infect Dis 150: 737–744PubMedGoogle Scholar
  39. Cornelissen CN, Biswas GD, Tsai J, Purachuri DK, Thompson SA, Sparling PF (1992) Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB dependent outer membrane receptors. J Bacteriol 174: 5788–5797PubMedGoogle Scholar
  40. Cornelissen CN, Biswas GD, Sparling PF (1993) Expression of gonococcal transferrin-binding protein 1 causes Escherichia coli to bind human transferrin. J Bacteriol 175: 2448–2450PubMedGoogle Scholar
  41. Daly JA, Lee TJ, Spitznagel JK, Sparling PF (1982) Gonococci with mutations to low-level penicillin resistance exhibit increased sensitivity to the oxygen-independent bactericidal activity of human polymorphonuclear leukocyte garnule extracts. Infect Immun 34: 826–833Google Scholar
  42. De hormaeche R, Mehlert A, Young DB, Hormaeche CE (1990) Antigenic homology between the 65 kDA heat shock protein of mycobacterium tuberculosis, GroEL of E. coli and proteins of Neisseria gonorrhoeae expressed during infection. In: Achtman M, Kohl P, Marchal C, Morelli G, Seiler A, Thiesen B (eds) Neisseriae 1990. De Gruyter, Berlin, pp 199–203Google Scholar
  43. Deal CD, Krivan HC (1990) Lacto- and ganglio-series glycolipids are adhesion receptors for Neisseria gonorrhoeae. J Biol Chem 265: 12774–12777PubMedGoogle Scholar
  44. Dekker NP, Lammel CJ, Mandrell RE, Brooks GF (1990) Opa (protein II) influences gonococcal organization in colonies, surface apppearance, size and attachment to human fallopian tube tissues. Microb Pathog 9: 19–31PubMedGoogle Scholar
  45. Dempsey JAF, Cannon JG (1994) Location of genetic markers on the physical map of the chromosome of Neisseria gonorrhoeae strain FA1090 (in press)Google Scholar
  46. Dampsey JAF, Litaker W, Madhure A, Snodgrass TL, Cannon JG (1991) Physical map of the chromosome of Neisseria gonorrhoeae FA1090 with locations of genetic markers, including opa and pil genes. J Bacteriol 173: 5476–5486Google Scholar
  47. DeVoe IW, Gilchrist JE, Storm DW (1973) Ultrastructural studies on the fate of group B meningococci in human peripheral blood leukocytes. Can J Microbiol 19: 1355–1359PubMedGoogle Scholar
  48. Dorward DW, Garon CF (1989) DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171: 4196–4201PubMedGoogle Scholar
  49. Evans BA (1977) Ultrastructural study of cervical gonorrhoeae. J Infect Dis 36: 248–25Google Scholar
  50. Facius D, Meyer TF (1993) A novel determinant (comA) essential for natural transformation competencein Neisseria gonorrhoeae and the effect of a comA defect on pilin variation. Mol Microbiol 10: 699–712PubMedGoogle Scholar
  51. Falkow S (1990) The “Zen” of bacterial pathogenicity. In: Iglewski BH, Clark VL (eds) Molecular basis of bacterial pathogenesis. Academic, New York, pp 3–9Google Scholar
  52. Farrell CF, Rest RF (1990) Up-regulation of human neutrophil receptors for Neisseria gonorrhoeae expressing Pll outer membrane proteins. Infect Immun 58: 2777–2784PubMedGoogle Scholar
  53. Farrell CF, Naids FL, Rest RF (1991) Identification of a human neutrophil receptor for gonococcal outer membrane protein II. In: Achtman M, Kohl P, Marchal C, Morelli G, Seiler A, Thiesen B (eds) Neisseriae 1990. De Gruyter, Berlin, pp 579–584Google Scholar
  54. Feavers IM, Heath AB, Bygraves JA, Maiden MCJ (1992) Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Mol Microbiol 6: 489–495PubMedGoogle Scholar
  55. Fisher SH, Rest RF (1988) Gonococci possessing only certain P.ll outer membrane proteins interact with human neutrophils. Infect Immun 56: 1574–1579Google Scholar
  56. Fontaine EA, Taylor-Robinson D, Hanna NF, Coufalik ED (1982) Anaerobes in men with urethritis. Br J Venerol Dis 58: 575–583Google Scholar
  57. Frangipane JV, Rest RF (1992) Anaerobic growth of gonococci does not alter their opa-mediated interactions with human neutrophils. Infect Immun 60: 1793–1799PubMedGoogle Scholar
  58. Frangipane JV, Rest RF (1993) Anaerobic growth and cytidine 5’-monophospho-N-acetyl-neuraminic acid act synergistically to induce high-level serum resistance in Neisseria gonorrhoeae. Infect Immun 61: 1657–1666PubMedGoogle Scholar
  59. Frosch M, Meyer TF (1992) Transformation-mediated exchange of virulence determinants by cocultivation of pathogenic Neisseriae. FEMS Microbiol Lett 100: 3435–3439Google Scholar
  60. Frosch M, Weiseberger C, Meyer TF (1989) Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc Natl Acad Sci USA 86: 1669–1673PubMedGoogle Scholar
  61. Fyfe JAM, Strugnell RA, Davies JK (1993) Control of gonococcal pilin-encoding gene expression in Escherichia coli. Gene 123: 45–50PubMedGoogle Scholar
  62. Genco CA, Chen C-Y, Arko RJ, Kapczynski DR, Morse SA (1991) Isolation and characterization of a mutant of Neisseria gonorrhoeae that is defective in the uptake of iron from transferrin and haemoglobin and is avirulent in mouse subcutaneous chambers. J Gen Microbiol 137: 1313–1321PubMedGoogle Scholar
  63. Gibbs CP, Reimann B-Y, Schultz E, Kaufmann A, Haas R, Meyer TF (1989) Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338: 651–652PubMedGoogle Scholar
  64. Goodman SD, Scocca JJ (1988) Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci USA 85: 6982–6986PubMedGoogle Scholar
  65. Gunn JS, Stein DC (1993) Natural variation of the Ngoll restriction-modification system of Neisseria gonorrhoeae. Gene 132: 15–20PubMedGoogle Scholar
  66. Gunn JS, Piekarowicz A, Chien R, Stein DC (1992) Cloning and linkage analysis of Neisseria gonorrhoeae DNA methyltransferases. J Bacteriol 174: 5654–5660PubMedGoogle Scholar
  67. Haas R, Meyer TF (1986) The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44: 107–115PubMedGoogle Scholar
  68. Haas R, Veit S, Meyer TF (1992) Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among gonococcal isolates. Mol Microbiol 6: 197–208PubMedGoogle Scholar
  69. Hacker J, Fischer G (1993) Immunophilins: structure-function relationship and possible role in microbial pathogenicity. Mol Microbiol 10: 445–456PubMedGoogle Scholar
  70. Haines KA, Yeh L, Blake MS, Cristello P, Korchak H, Weissmann G (1988) Protein 1, a translocatable ion channel from Neisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting 02~ generation. J Biol Chem 263: 945–951PubMedGoogle Scholar
  71. Haines KA, Reibman J, Tang XY, Blake M, Weissmann G (1991) Effects of protein 1 of Neisseria gonorrhoeae on neutrophil activation—Generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis. J Cell Biol 114: 433–442PubMedGoogle Scholar
  72. Halter R, Pohlner J, Meyer TF (1989) Mosaic-like organisation of IgA protease genes in Neisseria gonorrhoeae generated by horizontal genetic exchange in vivo. EMBO J 8: 2737–2744PubMedGoogle Scholar
  73. Hammerschmidt S, Birkholz C, Zahringer U, Robertson BDR, van Putten JPM, Ebeling O, Frosch M (1994) Contribution of genes for the capsule gene complex (cps) to lipooligosaccharide biosynthesis in Neisseria meningitidis. Mol Microbiol 11: 885–896PubMedGoogle Scholar
  74. Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3: 2574–2582PubMedGoogle Scholar
  75. Hebeler BH, Young FE (1975) Autolysis of Neisseria gonorrhoeae. J Bacteriol 122: 385–391PubMedGoogle Scholar
  76. Higgins CF, Hinton JC, Hulton CS, Owen-Hughes T, Pavitt GD, Seirafi A (1990) Protein HI: a role for chromatin structure in the regulation of bacterial gene expression and virulence. Mol Microbiol 4: 2007–2012PubMedGoogle Scholar
  77. Hill SA, Morrison SG, Swanson J (1990) The role of direct oligonucleotide repeats in gonococcal pilin gene variation. Mol Microbiol 4: 1341–1352PubMedGoogle Scholar
  78. Hobbs M, Mattick JS (1993) Common components in the assembly of type-4-fimbriae, DNA transfer systems, filamentous phage and protein secretion apparatus. Mol Microbiol 10: 233–243PubMedGoogle Scholar
  79. Hobbs MM, Seiler A, Achtman M, Cannon JG (1994) Microevolution within a clonal population of pathogenic bacteria: recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis (in press)Google Scholar
  80. Hoehn GT, Clark VL (1990) Distribution of a protein antigenically related to the major anaerobically induced gonococcal outer membrane protein among other Neisseria species. Infect Immun 58: 3929–3933PubMedGoogle Scholar
  81. Hoehn GT, Clark VL (1991) Evidence for the in vivo modification of the gonococcal Pan 1 protein. In: Achtman M, Kohl P, Marchal C, Morelli G, Seiler A, Thiesen B (eds) Neisseriae 1990. De Gruyter, Berlin, pp 591–595Google Scholar
  82. Hoehn GT, Clark VL (1992a) The major anaerobicaly induced outer membrane protein of Neisseria gonorrhoeae, Pan 1, is a lipoprotein. Infect Immun 60: 4704–4708PubMedGoogle Scholar
  83. Hoehn GT, Clark VL (1992b) Isolation and nucleotide sequence of the gene (aniA) encoding the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae. Infect Immun 60: 4695–4703PubMedGoogle Scholar
  84. Irwin SW, Averil N, Cheng CY, Schryvers AB (1993) Preparation and analysis of isogenic mutants in the transferrin receptor protein genes, tpbA and tbpB, from Neisseria meningitidis. Mol Microbiol 8: 1125–1133PubMedGoogle Scholar
  85. Jennings MP, van der Ley P, Wilks KC, Maskell DJ, Poolman JT, Moxon ER (1993) Cloning and molecular analysis of the galE gene of Neisseria meningitidis and its role in lipopolysaccharide biosynthesis. Mol Microbiol 10: 361–369PubMedGoogle Scholar
  86. Johnson SC, Chung RCY, Deal CD, Boslego JW, Sadoff JC, Wood SW, Brinton Jr CC, Tramont ED (1991) Human immunization with Pgh 3-2 gonococcal pilus results in cross-reactive antibody to the cyanogen bromide fragment-2 of pilin. J Infect Dis 163: 128–134PubMedGoogle Scholar
  87. Johnson SR, Steiner BM, Gruce DD, Perkins GH, Arko RJ (1993) Characterization of a catalase-deficient strain of Neisseria gonorrhoeae: evidence for the significance of catalase in the biology of N. gonorrhoeae. Infect Immun 61: 1232–1238Google Scholar
  88. Jones MD, Borrow R, Fox AJ, Gray S, Cartwright KA, Poolman JT (1992) The lipooligosaccharide immunotype as a virulence determinant in Neisseria meningitidis. Microb Pathog 13: 219–224PubMedGoogle Scholar
  89. Jonsson A-B, Nyberg G, Normark S (1991) Phase variation of gonococcal pili by frame shift mutation in pilC, a novel gene for pilus assembly. EMBO J 10: 477–488PubMedGoogle Scholar
  90. Judd RC (1989) Protein I: Structure, function, and genetics. Clin Microbiol Rev 2: S41–48PubMedGoogle Scholar
  91. Keevil CW, Major NC, Davies DB, Robinson A (1986) Physiology and virulence determinants of Neisseria gonorrhoeae grown in glucose-, oxygen- or cystine-limited continuous culture. J Gen Microbiol 132: 3289–3302PubMedGoogle Scholar
  92. Keevil CW, Davies DB, Spillane BJ, Mahenthiralingam E (1989) Influence of iron-limited and replete continuous culture on the physiology and virulence of Neisseria gonorrhoeae. J Gen Microbiol 135: 851–863PubMedGoogle Scholar
  93. Kellogg DS Jr, Cohen IR, Norins LC, Schroeter AL, Reising G (1968) Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J Bacteriol 96: 596–605PubMedGoogle Scholar
  94. Kilian M, Mestecky J, Russell MW (1988) Defense mechanisms involving Fcdependent functions on immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol Rev 52: 296–303PubMedGoogle Scholar
  95. King G, Swanson J (1978) Studies on gonococcal infections. XV. Identification of surface proteins of Neisseria gonorrhoeae correlated with leukocyte association. Infect Immun 21: 575–584PubMedGoogle Scholar
  96. Kita E, Matsuura H, Kashiba S (1981) A mouse model for the study of gonococcal genital infection. J Infect Dis 143: 67–70PubMedGoogle Scholar
  97. Kita E, Katsui N, Emoto M, Sawaki M, Oku D, Nishikawa F, Hamuro A, Kashiba S (1991) Virulence of transparent and opaque colony types of Neisseria gonorrhoeae for the genital tract of mice. J Med Microbiol 34: 355–362PubMedGoogle Scholar
  98. Klauser T, Pohlner J, Meyer TF (1990) Extracellular transport of cholera toxin B subunit using Neisseria IgA protease ß-domain: conformation-dependent outer membrane translocation. EMBO J 9: 1991–1999PubMedGoogle Scholar
  99. Klauser T, Pohlner J, Meyer TF (1992) Selective extracellular release of cholera toxin B subunit by Escherichia coli: dissection of Neisseria Igaß-mediated outer membrane transport. EMBO J 11: 2327–2335PubMedGoogle Scholar
  100. KlauserT, Krämer J, Otzelberger K, Pohlner J, Meyer TF (1993a) Characterization of the Neisseria Igaßcore, the essential unit for outer membrane targetting and extracellular protein secretion. J Mol Biol 234: 579–593Google Scholar
  101. Klauser T, Pohlner J, Meyer TF (1993b) The secretion pathway of IgA protease-type proteins in gramnegative bacteria. Bioessays 15: 799–805PubMedGoogle Scholar
  102. Klimpel KW, Clark VL (1989) The heat shock response of type 1 and type 4 gonococci. Sex Transm Dis 16: 141–147PubMedGoogle Scholar
  103. Knapp JS, Clark VL (1984) Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. Infect Immun 46: 176–181PubMedGoogle Scholar
  104. Koomey JM, Gotschlich EC, Robbins K, Bergström S, Swanson J (1987) Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117: 391–398PubMedGoogle Scholar
  105. Krieger AG, Schiller NL, Roberts RA (1980) Gonococci-human polymorphonuclear leukocyte interactions: metabolic studies associated with attachment and ingestion. Infect Immun 28: 991–1000PubMedGoogle Scholar
  106. Kupsch E-M, Knepper B, Kuroki T, Heuer I, Meyer TF (1993) Variable opacity ( Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J 12: 641–650PubMedGoogle Scholar
  107. Lambden PR, Heckeis JE, James LT, Watt PJ (1979) Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J Gen Microbiol 114: 305–312PubMedGoogle Scholar
  108. Lambden PR, Robertson JN, Watt PJ (1980) Biological properties of two distinct pilus types produced by isogenic variants of Neisseria gonorrhoeae P9. J Bacteriol 141: 393–396PubMedGoogle Scholar
  109. Legrain M, Mazarin V, Irwin SW, Bouchon B, Quentin-Millet M-J, Jacobs E, Schryvers AB (1993) Cloning and characterization of Neisseria meningitidis genes encoding the transferrin binding-proteins Tbp1 and Tbp2. Gene 130: 73–80PubMedGoogle Scholar
  110. Litwin CM, Calderwood SB (1993) Role of iron in the regulation of virlence genes. Clin Microbiol Rev 6: 137–149PubMedGoogle Scholar
  111. Lomholt H, Poulsen K, Caugant DA, Kilian M (1992) Molecular polymorphism and epidemiology of Neisseria meningitidis immunoglobulin A1 protease. Proc Natl Acad Sci USA 89: 2120–2124PubMedGoogle Scholar
  112. Makino S, van Putten JPM, Meyer TF (1991) Phase variation of the opacity outer membrane protein controls the invasion of Neisseria gonorrhoeae into human epithelial cells. EMBO J 10: 1307–1315PubMedGoogle Scholar
  113. Mandrell RE, Apicella MA (1993) Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiol. 187: 382–402Google Scholar
  114. Manning PA, KaufmannA, Roll U, Pohlner J, Meyer TF, Haas R (1991) L-pilin variants of Neisseria gonorrhoeae MS11. Mol Microbiol 5: 917–926Google Scholar
  115. Masson L, Holbein BE, Ashton FE (1982) Virulence linked and polysaccharide production in serogroup B Neisseria meningitidis. FEMS Microbiol Lett 13: 187–190Google Scholar
  116. Maynard Smith J, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90: 4384–4388Google Scholar
  117. McAllister CF, Stephens DS (1993) Analysis in Neisseria meningitidis and other Neisseria species of genes homologous to the FKBP immunophilin family. Mol Microbiol 10: 13–23PubMedGoogle Scholar
  118. McGee ZA, Johnson AP, Taylor-Robinson D (1981) Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis 143: 413–422PubMedGoogle Scholar
  119. McGee ZA, Clemens CM, Jensen RL, Klein JJ, Barley LR, Gorby GL (1992) Local induction of tumor necrosis factor as a molecular mechanism of mucosal damage by gonococci. Microb Pathog 12: 333–341PubMedGoogle Scholar
  120. Meyer TF, Haas R, Stern A, Fiedler H, Frosch M, Jähnig F, Muraldharan K, Veit S (1986) Variable and conserved proteins on the surface of pathogenic Neisseriae. In: Bacterial Vaccines and Local Immunity, Annali Sclavo, Siena 1 - 2: 407–414Google Scholar
  121. Morelli G, Lammel CJ, Pohlner J, Müller K, Blake M, Brooks GF, Meyer TF, Kuomare B, Brieske N, Achtmann M (1994) Immunogenicity and variability of epitopes within lgA1 proteases from serogroup A Neisseria meningitidis. Mol Microbiol 11: 15–22Google Scholar
  122. Morrison RP, Manning DS, Caldwell HD (1992) Immunology of Chlamydia trachomatis infections, immunoprotective arid immunopathognic responses. In: Quinn TC (ed) Sexually transmitted diseases. Raven, New York, pp 57–84Google Scholar
  123. Muir LL, Strugnell RA, Davies JK (1988) Proteins that appear to be associated with pili in Neisseria gonorrhoeae. Infect Immun 56: 1743–1747PubMedGoogle Scholar
  124. Naids FL, Rest RF (1991) Stimulation of human neutrophil oxidative metabolism by non-opsonized Neisseria gonorrhoeae. Infect Immun 59: 4383–4390PubMedGoogle Scholar
  125. Naids FL, Belisle B, Lee N, Rest RF (1991) Interactions of Neisseria gonorrhoeae with human neutrophils: studies with purified PI I ( Opa) outer membrane proteins and synthetic Opa peptides. Infect Immun 59: 4628–4635PubMedGoogle Scholar
  126. Nassif X, Lowy J, Stenberg P, O’Gaora P, Ganji A, So M (1993) Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 8: 719–725PubMedGoogle Scholar
  127. Novotny P, Short JA, Hughes M, Miler J J, Syrett cC Turner WH, Harris JRW, McLennan IPB (1977) Studies on the mechanism of pathogenicity of Neisseria gonorrhoeae. J Med Microbiol 10: 347–365PubMedGoogle Scholar
  128. Nurminen M, Butcher S, Idanpaan-Heikkila I, Wahlstrom E, Muttilainen S, Runeberg-Nyman K, Sarvas M, Makela PH (1992) The class 1 outer membrane protein of Neisseria meningitidis produced in Bacillus subtilis can give rise to protective immunity. Mol Microbiol 6: 2499–2506PubMedGoogle Scholar
  129. Nyberg G, Stromberg N, Jonsson A, Karlsson KA, Normark S (1990) Erythrocyte ganglosides act as receptors for Neisseria flava: identification of the Sia-1 adhesin. Infect Immun 58: 2555–2563PubMedGoogle Scholar
  130. Ogierman MA, Zabihi S, Mourtzios L, Manning PA (1993) Genetic organization and sequence of the promoter-distal region of the tcp gene cluster of Vibrio cholerae. Gene 126: 51–60PubMedGoogle Scholar
  131. Olyhoek AJM, Sarkari J, Bopp M, Morelli G, Achtman M (1991) Cloning and expression in Escherichia coli of opc, the gene for an unusual class 5 outer membrane protein from Neisseria meningitides (meningococci/surface antigen). Microb Pathog 11: 249–257PubMedGoogle Scholar
  132. O’Rourke M, Stevens E (1994) Genetic structures of Neisseria gonorrhoeae populations: a non-clonal pathogen (in press)Google Scholar
  133. Palmer HM, Powell NBL, Ala’Aldeen DA, Wilton J, Borriello SP (1993) Neisseria meningitidis transferrinbinding protein 1 expressed in Escherichia coli is surface exposed and binds human transferrin. FEMS Microbiol Lett 110: 139–146PubMedGoogle Scholar
  134. Pannekoek Y, van Putten JPM, Dankert J (1992a) Identification and molecular analysis of a 63-kDa gonococcal stress protein from Neisseria gonorrhoeae. J Bacteriol 174: 6928–6937PubMedGoogle Scholar
  135. Pannekoek Y, DankertJ, van Putten JPM (1992b) Identification and characterization of a cross-reactive and a unique B-cell epitope on the Hsp60 homologue from Neisseria gonorrhoeae. FEMS Microbiol Lett 99: 23–30Google Scholar
  136. Pannekoek Y, Schuurman IGA, Dankert J, van Putten JPM (1993) Immunogenicity of the meningococcal stress protein MSP63 during natural infection. Clin Exp Immunol 93: 377–381PubMedGoogle Scholar
  137. Parge HE, Bernstein SL, Deal CD, McRee DE, Christensen D, Capozza MA, Kays BW, FieserTM, Draper D, So M, Getzoff E, Tainer JA (1990) Biochemical purification and crystallographic characterization of the fiber-forming protein pilin from Neisseria gonorrhoeae. J Biol Chem 265: 2278–2285PubMedGoogle Scholar
  138. Parsons NJ, Patel PV, Martin PMV, Goldner M, Smith H (1985) Gonococci in vivo and in vitro: host and bacterial determinants of gonococca resistance to killing by human serum and by phagocytes. In: Schoolnik GD, Brooks GF, Falkow S, Frasch CE, Knapp JS, McCutchan JA, Morse SA (eds) The pathogenic Neisseriae. American Society for Microbiology, Washington DC, pp 487–494Google Scholar
  139. Perrolet H, Guinet RMF (1986) Characterization of a gonococcal cell-wall lectin-adhesin with vaccine potential. Ann Sclav 399–406Google Scholar
  140. Plaut AG, Gilbert JV, Artenstein MS, Capra JD (1975) Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 190: 1103–1105PubMedGoogle Scholar
  141. Pohlner J, Halter R, Beyreuther K, Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325: 458–462PubMedGoogle Scholar
  142. Pohlner J, Klauser T, Kuttler E, Halter R (1992) Sequence-specific cleavage of protein fusions using a recombinant Neisseria type 2 IgA protease. BioTechnology 10: 799–804PubMedGoogle Scholar
  143. Purachuri DK, Seifert HS, Ajioka RS, Karlsson JA, So M (1990) Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin. Proc Natl Acad Sci USA 87: 333–337Google Scholar
  144. Rest RF, Fisher SH, Ingham ZZ, Jones JF (1982) Interactions of Neisseria gonorrhoeae with human neutrophils: effects of serumand gonococcal opacity on killing and chemoluminescence. Infect Immun 36: 737–744PubMedGoogle Scholar
  145. Rice PA (1989) Molecular basis for serum resistance in Neisseria gonorrhoeae. Clin Microbiol Rev 2: S112–117PubMedGoogle Scholar
  146. Robertson BDR, Meyer TF (1992) Genetic variation in pathogenic bacteria. Trends Genet 8: 422–427PubMedGoogle Scholar
  147. Robertson BDR, Frosch M, van Putten JPM (1993) The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide. Mol Microbiol 8: 891–901PubMedGoogle Scholar
  148. Robertson JN, Vincent P, Ward ME (1977) The preparation and properties of gonococcal pili. J Gen Microbiol 102: 169–177PubMedGoogle Scholar
  149. Rock JP, Rest RF (1988) Rapid damage to membranes of Neisseria gonorrhoeae caused by human neutrophil granule extracts. J Gen Microbiol 134: 509–519PubMedGoogle Scholar
  150. Rothbard JB, Fernandez R, Wang L, Teng NNH, Schoolnik GK (1985) Antibodies to peptides corresponding to a conserved sequnec of gonococcal pilins block bacterial adhesion. Proc Natl Acad Sci USA 82: 915–919Google Scholar
  151. Rudel T, van Putten JPM, Gibbs CP, Haas R, Meyer TF (1992) Interaction of two variable proteins (pile and pilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 22: 3439–3450Google Scholar
  152. Salit IE, Tomalty L (1986) Experimental meningococcal infection in mice: a model for mucosal invasion. Infect Immun 51: 648–652PubMedGoogle Scholar
  153. Samspon BA, Gotschlich EC (1992) Neisseria meningitidis encodes an FK506-inhibitable rotamase. Proc Natl Acad Sci USA 89: 1164–1168Google Scholar
  154. Sarkari J, Pandit N, Moxon ER, Achtman M (1994) Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol Microbiol 13: 207–217PubMedGoogle Scholar
  155. Saukkonen S (1988) Experimental meningococcal meningitis in the infant rat. Microb Pathog 4: 203–211PubMedGoogle Scholar
  156. Schneider H, Hammack CA, Apicella MA, Griffis JM (1988) Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae. Infect Immun 56: 942–946PubMedGoogle Scholar
  157. Schneider H, Griffiss JM, Boslego JW, Hitchcock PJ, Zahos KM, Apicella MA (1991) Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J Exp Med 174: 1601–1606PubMedGoogle Scholar
  158. Schoolnik GK, Fernandez R, Tai JY, Rothbard J, Gotschlich EC (1984) Gonococcal pili. Primary structure and receptor binding domain. J Exp Med 159: 1351–1370Google Scholar
  159. Segal E, Billyard E, So M, Storzbach S, Meyer TF (1985) Role of chromosomal rearrangement in Neisseria gonorrhoeae pilus phase variation. Cell 40: 293–300PubMedGoogle Scholar
  160. Seifert HS, Ajioka RS, Marchal C, Sparling PF, So M (1988) DNA transformation leads to pili antigenic variation in Neisseria gonorrhoeae. Nature 336: 392–395PubMedGoogle Scholar
  161. Shafer WM (1988) Lipopolysaccharide masking of gonococcal outer-membrane proteins modulates binding of bactericidal cathepsin G to gonococci. J Gen Microbiol 134: 539–545PubMedGoogle Scholar
  162. Shafer WM, Rest RF (1989) Interactions of gonococci with phagocytic cells. Annu Rev Microbiol 43: 121–145PubMedGoogle Scholar
  163. Shafer WM, Onunka VC, Jannoun M, Huthwaite LW (1990) Molecular mechanism for the antigonococcal action of lysosomal cathepsin G. Mol Microbiol 4: 1269–1277PubMedGoogle Scholar
  164. Shaw JH, Falkow S (1988) Model for invasion of human tissue culture cells by Neisseria gonorrhoeae. Infect Immun 56: 1625–1632PubMedGoogle Scholar
  165. Simon D, Rest RF (1992) Escherichia coli expressing Neisseria gonorrhoeae opacity-associated outer membrane protein invade human cervical and endometrial epithelial cells. Proc Natl Acad Sci USA 89: 5512–5516PubMedGoogle Scholar
  166. Smith H (1991) The Leeuwenhoek lecture 1991. The influence of the host on microbes that cause disease. Proc R Soc Lond [B] 246: 97–105Google Scholar
  167. Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92: 1364–1371PubMedGoogle Scholar
  168. Spratt BG, Bowler LD, Zhang Q-Y, Zhon J, Smith JM (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34: 115–125PubMedGoogle Scholar
  169. Stephens DS (1989) Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays. Clin Microbiol Rev 2: S104–111PubMedGoogle Scholar
  170. Stephens DS, Farley MM (1991) Pathogenic events during infection of the human naso-pharynx with Neisseria meningitidis and Haemophilus influenzae. Rev Infect Dis 13: 22–33PubMedGoogle Scholar
  171. Stephens DS, McGee ZA (1981) Attachment of Neisseria meningitidis to human mucosal surfaces: influence of pili and type of receptor cell. J Infect Dis 143: 525–532PubMedGoogle Scholar
  172. Stephens DS, Hoffman LH, McGee ZA (1983) Interaction of Neisseria meningitidis with human nasophayngeal mucosa: attachment and entry into columnar epithelial cells. J Infect Dis 148: 369–376PubMedGoogle Scholar
  173. Stephens DS, Whitney AM, Melly MA, Hoffman LH, Farley MM, Frasch CE (1986) Analysis of damage to human ciliated nasopharyngeal epithelium by Neisseria meningitidis. Infect Immun 51: 579–585PubMedGoogle Scholar
  174. Stern A, Brown M, Nickel P, Mayer TF (1986) Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47: 61–71PubMedGoogle Scholar
  175. Stromberg N, Deal C, Nyberg G, Normark S, So M, Karlsson K (1988) Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae. Proc Natl Acad Sci USA 85: 4902–4906PubMedGoogle Scholar
  176. Sullivan KM, Saunders JR (1989) Nucleotide sequence and genomic organization of the NgoPII restriction-modification system of Neisseria gonorrhoeae. Mol Gen Genet 216: 380–387PubMedGoogle Scholar
  177. Swanson J, Zeligs B (1974) Studies on the gonococcus infection. VI. Electron microscopic study on in vitro phagocytosis by human leukocytes. Infect Immun 10: 645–656PubMedGoogle Scholar
  178. Swanson J, King G, Zeligs B (1975) Studies on gonococcus infection VII. In vitro killing of gonococci by human leukocytes. Infect Immun 11: 65–68Google Scholar
  179. Swanson J, Bergstrom S, Robbins K, Barrera O, Koomey JM (1986) Gene conversion involving the pilin structural gene correlates with the pilus + to pilus - changes in Neisseria gonorrhoeae. Cell 47: 267–276PubMedGoogle Scholar
  180. Swanson J, Robbins K, Barrera O, Corwin D, Boslego J, Ciak J, Blake MS, Koomey JM (1987a) Gonococcal pilin variants in experimental gonorrhea J Exp Med 165: 1344–1357Google Scholar
  181. Swanson J, Robbins K, Barrera O, Koomey JM (1987b) Gene conversion variants generate structurally distinct pilin polypepeptides in Neisseria gonorrhoeae. J Exp Med 165: 1016–1025PubMedGoogle Scholar
  182. Swanson J, Barrera O, Sola J, Boslego J (1988) Expression of outer membrane protein II by gonococci in experimental gonorrhea. J Exp Med 168: 2121–2129PubMedGoogle Scholar
  183. Taha MK, So M, Seifert HS, Billyard E, Marchal C (1988) Pilin expression in Neisseria gonorrhoeae is under both positive and negative transcriptional control EMBO J 7: 4367–4378Google Scholar
  184. Taha M-K, Larribe M, Dupuy B, Giorgini D, Marchal C (1992) Role of pilA, an essential regulatory gene of Neisseria gonorrhoeae, in the stress response. J Bacteriol 174: 5978–5981PubMedGoogle Scholar
  185. Taylor-Robinson D, Furr PM, Hetherington PM (1990) Neisseria gonorrhoeae colonises the genital tract of oestradiol-treated germ-free mice. Microb Pathog 9: 369–374PubMedGoogle Scholar
  186. Thompson SA, Wang LL, West A, Sparling PF (1993a) Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J Bacteriol 175: 811–818PubMedGoogle Scholar
  187. Thompson SA, Wang LL, Sparling PF (1993b) Cloning and nucleotide sequence of frpC, a second gene from Neisseria meningitidis encoding a protein similar to RTX cytotoxins. Mol Microbiol 9: 85–96PubMedGoogle Scholar
  188. Tjia KF, van Putten JPM, Pels E, Zanen HC (1988) The interaction between Neisseria gonorrhoeae and the human cornea in organ culture: an electron microscopic study. Graefes Arch Clin Exp Opthalmol 226: 341–345Google Scholar
  189. Tsai C-M, Boykins R, Frasch CE (1983) Heterogeneity and variation among Neisseria meningitides lipopolysaccharides. J Bacteriol 155: 498–504PubMedGoogle Scholar
  190. Van Putten JPM (1990) Iron acquisition and the pathogenesis of meningococcal and gonococcal disease. Med Microbiol Immunol 179: 289–295PubMedGoogle Scholar
  191. Van Putten JPM (1991) How to measure gonococcal invasion. In: Achtman M, Kohl P, Marchal C, Morelli G, Seiler A, Thiesen B (eds) Neisseriae 1990. De Gruyter, Berlin, pp 639–644Google Scholar
  192. Van Putten JPM (1993) Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J 12: 4043–4051PubMedGoogle Scholar
  193. Vázquez JA, de la Fuente L, Berron S, O’Rourke M, Smith NH, Zhou J, Spratt BG (1993) Ecological separation and genetic isolation of Neisseria gonorhoeae and Neisseria meningitidis. Curr Biol 3: 567–572Google Scholar
  194. Veale DR, Smith H, Witt KA, Marshall RB (1975) Differential ability of colonial types of Neisseria gonorrhoeae to produce infection and inflammatory response in subcutaneous perforated plastic chambers in guinea pigs and rabbits. J Med Microbiol 8: 325–335PubMedGoogle Scholar
  195. Virji M, Heckels JE (1984) The role of common and type-specific antigenic domains in adhesion and virulence of gonococci for human apithelial cells. J Gen Microbiol 130: 1089–1095PubMedGoogle Scholar
  196. Virji M, Heckels JE (1986) The effect of protein II and pili on the interaction of Neisseria gonorrhoeae with human polymorphonuclear leucocytes. J Gen Microbiol 132: 503–512PubMedGoogle Scholar
  197. Virji M, Heckels JE, Potts WJ, Hart CA, Saunders JR (1989) Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequence in the genomes of Neisseria spp. J Gen Microbiol 135: 3239–3251PubMedGoogle Scholar
  198. Virji M, Alexandrescu C, Ferguson DJP, Saunders J, Moxon ER (1992a) Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 6: 1271–1279PubMedGoogle Scholar
  199. Virji M, Makepeace K, Ferguson DJP, Achtman M, Sarkari J, Moxon ER (1992b) Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol Microbiol 6: 2785–2795PubMedGoogle Scholar
  200. Virji M, Makepeace K, Ferguson DJP, Achtman M, Moxon ER (1993a) Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol 10: 499–510PubMedGoogle Scholar
  201. Virji M, Saunders JR, Sims G, Makepeace K, Maskell D, Ferguson DLP (1993b) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelialcells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequences and the glycosylation status of pilin. Mol Microbiol 10: 1013–1028PubMedGoogle Scholar
  202. Wang J-F, Caugant DA, Li X, Hu X, Poolman JT, Crowe BA, Achtman M (1992) Clonal and antigenic anapysis of serogroup A Neisseria meningitidis with particular reference of epidemiological features of epidemic meningitis in the People’s Republic of China. Infect Immun 60: 5267–5282PubMedGoogle Scholar
  203. Ward M, Watt PJ, Robertson JN (1974) The human fallopian tube: a laboratory model for gonococcal infection. J Infect Dis 129: 650–659PubMedGoogle Scholar
  204. Ward ME, Watt PJ (1972) Adherence of Neisseria gonorrhoeae to urethral mucosal cells: an electron microscopic study of human gonorrhea. J Infect Dis 126: 601–605PubMedGoogle Scholar
  205. Ward ME, Glynn AA, Watt PJ (1972) Fate of Neisseria gonorrhoeae in polymorphonuclear leukocytes: an electronmicroscopic study of the natural disease. Br J Exp Pathol 53: 289–294PubMedGoogle Scholar
  206. Ward ME, Robertson JN, Englefield PM, Watt PJ (1975) Gonococcal infection: invasion of mucosal surfaces of the genital tract. In: Schlessinger D (ed) Microbiology 1975. American Society for Microbiology, Washington DC, pp 188–199Google Scholar
  207. Watt PJ, Ward ME (1980) Adherence of Neisseria gonorrhoeae and other Neisseria species to mammalian cells. In: Beachey EH (ed) Bacterial adherence, receptors and recognition, series b, Vol 6. Chapman and Hall, New York, pp 252–287Google Scholar
  208. Weel JFL, van Putten JPM (1988) Ultrastructural localization of gonococcal antigens in infected epithelial cells as visualised by post-embedding immunoelectron microscopy. Microb Pathog 4: 213–222PubMedGoogle Scholar
  209. Weel JFL, van Putten JPM (1991) Fate of the major outer membrane protein P.IA in early and late events of gonococcal infection of epithelial cells. Res Microbiol 142: 985–993PubMedGoogle Scholar
  210. Weel JFL, Hopman CTP, Van Putten, JPM (1991a) In situ expression and localization of Neisseria gonorrhoeae opacity in infected epithelial cells: Apparent role of Opa proteins in cellular invasion. J Exp Med 173: 1395–1405PubMedGoogle Scholar
  211. Weel JFL, Hopman CTP, van Putten JPM (1991b) Bacterial entry and intracellular processing of Neisseria gonorrhoeae in epithelial cells: immunomorphological evidence for alterations in the major outer membrane protein P.IB. J Exp Med 174: 705–715PubMedGoogle Scholar
  212. Weiser JN, Love JM, Moxon ER (1989) The molecular mechanism of phase variation of H. influenza lipopolysaccharide. Cell 59: 657–665PubMedGoogle Scholar
  213. Welch RA (1991) Pore forming cytolysins of gram-negative bacteria. Mol Microbiol 5: 521–528PubMedGoogle Scholar
  214. Woods ML, Bonfiglioli R, McGee ZA, Georgopoulos C (1990) Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress. Infect Immun 58: 719–725PubMedGoogle Scholar
  215. Yamamoto N, Droffner NL (1985) Mechanisms determining aerobic and anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc Natl Acad Sci USA 82: 2077–2081PubMedGoogle Scholar
  216. Zhang QY, DeRyckere D, Lauer P, Koomey JM (1992) Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation. Proc Natl Acad Sci USA 89: 5366–5370PubMedGoogle Scholar
  217. Zhou J, Spratt BG (1992) Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis-interspecies recombination within the argF gene. Mol Microbiol 6: 2135–2146PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • T. F. Meyer
    • 1
  • J. Pohlner
    • 1
  • J. P. M. van Putten
    • 1
  1. 1.Max-Planck-Institut für Biologie, Abt. InfektionsbiologieTübingenGermany

Personalised recommendations