Skip to main content

Functional Aspects of Envelope-Associated Measles Virus Proteins

  • Chapter
Measles Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 191))

Abstract

Measles virus (MV) exhibits a very limited host range. Humans are the only known reservoir, although the virus can infect some monkey species. In the laboratory, the virus produces characteristic multinucleated giant cells and intracellular inclusion bodies when grown in a variety of human and simian cell cultures, thereby confirming this host specificity. The cytopathic affects are the result of a chain of events. Attachment of the virus is followed by a replicative cycle and the release of virus particles at the cell membrane. These steps all involve specific interaction of virus proteins, either between themselves or with cellular proteins. In this review we shall emphasize the importance of these protein-protein interactions for the function of the envelope-associated MV proteins. The inability of certain virus isolates, such as strains from subacute sclerosing panencephalitis (SSPE) patients, to sustain one or more of these interactions leads to incomplete or defective persistent infections in which virus particles are not formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkhatib G, Richardson C, Shen S-H (1990) Intracellular processing, glycosylation, and cell-surface expression of the measles virus fusion protein (F) encoded by a recombinant adenovirus. Virology 175: 262–270

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Clarke DK, Evans SA, Rima BK (1987) The nucleotide sequence of the gene encoding the F protein of canine distemper virus: a comparison of the deduced amino acid sequence with the other paramyxoviruses. Virus Res 8: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Beauverger P, Buckland R, Wild TF (1993) (to be published) Establishment and characterisation of murine cells constitutively expressing the fusion, nucleoprotein and matrix proteins of measles virus. J Virol Methods

    Google Scholar 

  • Bellini WJ, Englund G, Richardson CD, Rozenblatt S, Lazzarini RA (1986) Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences. J Virol 58: 408–416

    PubMed  CAS  Google Scholar 

  • Buckland R, Wild TF (1989) Leucine zipper motif extends. Nature 547: 6216

    Google Scholar 

  • Buckland R, Gerald C, Barker R, Wild TF (1987) Fusion glycoprotein of measles virus: nucleotide sequence of the gene and comparison with other paramyxoviruses. J Gen Virol 68: 1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Buckland R, Malvoisin E, Beauverger P, Wild TF (1992) A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. J Gen Virol 73: 1703–1707

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Rose JK (1993) Cell fusion by the envolope glycoproteins of persistent measles viruses wich caused lethal human brain disease. J Virol 67: 1493–1502

    PubMed  CAS  Google Scholar 

  • Citovsky V, Yanai P, Loyter A (1986) The use of circular dichroism to study conformational changes induced in Sendai virus envelope glycoproteins. A correlation with the viral fusogenic activity. J Bioi Chem 261: 2235–2239

    CAS  Google Scholar 

  • Crick FHC (1953) The packing of α-helices: simple coiled coils. Acta crystallographica 6: 689–697

    Article  CAS  Google Scholar 

  • Crise B, Buonocore L, Rose J K (1990) CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 64: 5585–5593

    PubMed  CAS  Google Scholar 

  • Dubay J, Roberts S, Brody B, Hunter E (1992) Mutations in the leucine zipper of the HIV-1 transmembrane glycoprotein affect fusion and infectivity. J Virol 66: 4748–4756

    Google Scholar 

  • Ewbank J, Creighton T (1991) The molten globule protein conformation probed by disulphide bonds. Nature 350: 518–520

    Article  PubMed  CAS  Google Scholar 

  • Fujinami Rs, Oldstone MBA (1981) Failure to cleave measles virus fusion protein in lymphoid cells. A possible mechanism for viral persistence in lymphocytes. J Exp Med 154: 1489–1499

    Article  PubMed  CAS  Google Scholar 

  • Gallaher W, Segrest J, Hunter E (1992) Are fusion peptides really“sided” insertional helices? Cell 70: 531–532

    Article  PubMed  CAS  Google Scholar 

  • Garcia JV, Miller D (1991) Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 350: 508–511

    Article  PubMed  CAS  Google Scholar 

  • Gerald C, Buckland R, Barker R, Freeman G, Wild TF (1986) Measles virus haemaglutinin gene: cloning, complete nucleotide sequence analysis and expression in COS cells. J Gen Virol 67: 2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, White JM, Waterfield MD (1978) Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequences generated during precursor activation. Proc Natl Acad Sci USA 75: 2737–2740

    Article  PubMed  CAS  Google Scholar 

  • Giraudon P, Wild TF (1985) Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144: 46–58

    Article  PubMed  CAS  Google Scholar 

  • Giraudon P, Gerald C, Wild TF (1984) A study of measles virus antigens in acutely and persistently infected cells using monoclonal antibodies: differences in the accumulation of certain viral proteins. Intervirology 21: 110–120

    Article  PubMed  CAS  Google Scholar 

  • Giraudon P, Jacquier MF, Wild TF (1988) Antigenic analysis of African measles virus fields: identification and localisation of one conserved and two variable epitope sites on the NP protein. Virus Res 18: 137–152

    Article  Google Scholar 

  • Gotoh B, Ohnishi Y, Inocencio NM, Esaki E, Nakayama K, Barr PJ, Thomas G, Nagai Y (1992) Mammalian subtilisin-related proteinases in cleavage activation of the paramyxovirus fusion glyco-proteins: superiority of Furin/PACE to PC2 or PC1/PC3. J Virol 66: 6391–6397

    PubMed  CAS  Google Scholar 

  • Graves MC, Silver SM, Choppin PW (1978) Measles virus polypeptide synthesis in infected cells. Viriology 86: 254–263

    Article  CAS  Google Scholar 

  • Hirano A (1992) Subacute sclerosing panencephalitis virus dominantly interferes with replication of wild-type measles in a mixed infection implication for viral persistence. J Virol 66: 1891–1898

    PubMed  CAS  Google Scholar 

  • Hirano A, Ayata M, Wang AH, Wong TC (1993) Functional analysis of matrix proteins expressed from cloned genes of measles virus variants that cause subacute sclerosing panencephalitis reveals a common defect in nucleocapsid binding. J Virol 67: 1848–1853

    PubMed  CAS  Google Scholar 

  • Hoxie JA, Alpers JD, Rakowski JL, Huebner K, Haggarty BS, Cedarbaum AJ, Reed JC (1986) Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science 234: 1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Hsu MC, Scheid A, Choppin PW (1981) Activation of the Sendai virus fusion protein (F) involves a conformational change with exposure of a new hydrophobic region. J Bioi Chem 256: 3557–3563

    CAS  Google Scholar 

  • Hu X, Ray R, Compans RW (1992) Functional interactions between the fusion protein and hemagglutinin-neuraminidase of human parainfluenza viruses. J Virol 66: 1528–1534

    PubMed  CAS  Google Scholar 

  • Hu A, Sheshberadaran H, Norrby E, Kövamees J (1993) Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 192: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Cattaneo R, Spielhofer P, Örvell C, Norrby E, Messerli M, Perriard JC, Billeter MA (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Hull JD, Krah DL, Choppin PW (1987) Resistance of a measles virus mutant to fusion inhibitory oligopeptides is not associated with mutations in the fusion peptide. Virology 159: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Kövamees J, Blixenkrone-Möller M, Sharma B, Örvell C, Norrby E (1991 a) The nucleotide sequence and deduced amino acid composition of the haemagglutinin and fusion proteins of the morbillivirus phocid distemper virus. J Gen Virol 72: 2959–2966

    Article  PubMed  Google Scholar 

  • Kövamees J, Blixenkrone-Möller M, Sharma B, Örvell C, Norrby E (1991 b) The nucleotide and predicted amino acid sequence of the attachment protein of canine distemper virus. Virus Res 19: 223–234

    Article  PubMed  Google Scholar 

  • Krah DL, Choppin PW (1988) Mice immunized with measles virus develop antibodies to a cell-surface receptor for binding virus. J Virol 62: 1565–1572

    PubMed  CAS  Google Scholar 

  • Liszewski MK, Post TW, Atkinson JP (1991) Membrane cofactor protein (MCP or CD46): newest members of the regulators of complement activation gene cluster. Annu Rev Immunol 9: 431–455

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä MJ, Salmi AA, Norrby E, Wild TF (1989) Monoclonal antibodies against measles virus hemagglutinin react with synthetic peptides. Scand J Immunol 30: 225–231

    Article  PubMed  Google Scholar 

  • Markwell MAK, Fox CF (1980) Protein-protein interaction within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking. J Virol 33: 152–166

    PubMed  CAS  Google Scholar 

  • Morrison T, Portner A (1991) Structure, function and intracellular processing of the glycoproteins of paramyxoviridae. In: Kingsberg DW (ed) The Paramyxoviruses, Plenum, pp 347–382

    Google Scholar 

  • Moscona A, Peluso RW (1991) Fusion properties of cells persistently infected with human parainfluenza virus type 3: participation of hemagglutinin-neuraminidase in membrane fusion. J Virol 65: 2773–2777

    PubMed  CAS  Google Scholar 

  • Mottet G, Portner A. Roux L (1986) Drastic immunoreactivity changes between the immature and mature forms of Sendai virus HN and F0 glycoproteins. J Virol 59: 132–141

    PubMed  CAS  Google Scholar 

  • Naniche D, Wild TF, Rabourdin-Combe C, Gerlier D (1992) A monoclonal antibody recognises a human cell surface glycoprotein involved in measles binding. J Gen Virol 73: 2617–2624

    Article  Google Scholar 

  • Naniche D, Wild TF, Rabourdin-Combe C, Gerlier D (1993a) Measles virus haemagglutinin induced down regulation of gp57/67, a molecule involved in virus binding. J Gen Virol 74: 1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993b) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol

    Google Scholar 

  • Neyt C, Geliebter J, Siaoui M, Morales D, Meulemans G, Bumy A (1989) Mutations located in both F1 and F2 subunits of the Newcasle disease virus fusion protein confer resistance to neutralization with monoclonal antibodies. J Virol 63: 952–954

    PubMed  CAS  Google Scholar 

  • Norrby E, Sheshberadaran H, Mc Cullough KC, Carpernter WC, Örvell C (1985) Is rinderpest virus the archevirus of the morbillivirus genus? Intervirology 23: 228–232

    Article  PubMed  CAS  Google Scholar 

  • Novick N, Hoekstra D (1988) Membrane penetration of Sendai virus glcoprotein during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labelling. Proc Natl Acad Sci USA 85: 7433–7437

    Article  PubMed  CAS  Google Scholar 

  • Ogura H, Sato H, Kamiya S, Nakamura S (1991). Glycosylation of measles virus haemagglutinin protein in infected cells. J Gen Virol 72: 2679–2684

    Article  PubMed  CAS  Google Scholar 

  • Portner A, Scroggs R, Naeve C (1987) The fusion glycoprotein of Sendai virus: sequence analysis of an epitope involved in fusion and virus neutralization. Virology 157: 556–559

    Article  PubMed  CAS  Google Scholar 

  • Richardson CD, Scheid A, Choppin PW (1980) Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology 105: 205–222

    Article  PubMed  CAS  Google Scholar 

  • Rota JS, Hummel KB, Rota PA, Bellini WJ (1992) Genetic variability of the glycoprotein genes of current wild-type measeles isolates. Virology 188: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Sanderson CM, McQueen NL, Nayak DP (1993) Sendai virus assembly: M protein binds to viral glycoproteins in transit through the secretory pathway. J Virol 67: 651–663

    PubMed  CAS  Google Scholar 

  • Sato TA, Kohama T, Sugiura A (1988) Intracellular processing of measles virus fusion protein. Arch Virol 98: 39–50

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Spielhoter P, Cattaneo R, Baczko K, ter Meulen V, Billeter MA (1992) Subacute sclerosing panencephalitis is typically characterized by alterations in the fusion protein cytoplasmic domain of the persisting measles virus. Virology 188: 910–915

    Article  PubMed  CAS  Google Scholar 

  • Sechoy O, Philippot JR, Bienvenue A (1987) F protein-F protein interaction within the Sendai virus identified by native bonding or chemical cross-linking. J Biol Chem 262: 11519–11523

    PubMed  CAS  Google Scholar 

  • Sheshberadaran H (1991) Exposure to acidic pH causes irreversible conformational changes in the measles virus hemagglutinin. Arch Virol 117: 305–311

    Article  PubMed  CAS  Google Scholar 

  • Sheshberadaran H, Norrby E (1986) Characterization of epitopes on the measles virus hemagglutinin. Virology 152: 58–65

    Article  PubMed  CAS  Google Scholar 

  • Sheshberadaran H, Norrby E, McCullough KC, Örvell C (1985) The antigenic relationship between measles, canine distemper and rinderpest viruses studied with monoclonal antibodies. J Gen Virol 67: 1381–1392

    Google Scholar 

  • Sugiyama M, Minamoto N, Kinjo T, Hirayama N, Asano K, Tsukiyama-Kohara K, Yoshikawa Y, Yamanouchi K (1991) Antigenic and functional characterization of rinderpest virus envelope proteins using monoclonal antibodies. J Gen Virol 72: 1863–1869

    Article  PubMed  CAS  Google Scholar 

  • Taylor J, Pincus S, Tartaglia J, Richardson C, Alkhatib G, Briedis D, Appel M, Norton E, Paoletti E (1991) Vaccinia virus recombinants expressing either the measles virus fusion or hemagglutinin glycopro-tein protect dogs against canine distemper virus challenge. J Virol 65: 4263–4274

    PubMed  CAS  Google Scholar 

  • Toyoda T, Gotoh B, Sakaguchi T, Kida H, Nagai Y (1988) Identification of amino acids relevant to three antigenic determinants of the fusion protein of Newcastle disease virus that are involved in fusion inhibitation and neutralization. J Virol 62: 4427–4430

    PubMed  CAS  Google Scholar 

  • Tsukiyama K, Sugiyama M, Yoshikawa Y, Yamanouchi K (1987) Molecular cloning and sequence analysis of the rinderpest virus mRNA encoding the hemagglutinin protein. Virology 160: 48–54

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama K, Yoshikawa Y, Yamanouchi K (1988) Fusion glycoprotein (F) of the rinderpest virus: entire nucleotide sequence of the F mRNA and several features of the F protein. Virology 164: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Vialard J, Lalumière M, Vemet T, Briedis D, Alkhatib G, Henning D, Levin D, Richardson C (1990) Synthesis of the membrane fusion and hemagglutinin proteins of the measles virus, using a novel baculovirus vector containing the !3-galactosidase gene. J Virol 64: 37–50

    PubMed  CAS  Google Scholar 

  • White J (1990) Viral and cellular fusion proteins. Annu Rev Physiol 52: 675–697

    Article  PubMed  CAS  Google Scholar 

  • Wild TF, Malvoisin E, Buckland R (1991) Measles virus: both the haemagglutinin and the fusion glycoproteins are required for fusion. J Gen Virol 72:439–442

    Article  Google Scholar 

  • Wilson I, Cox N (1990) Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol 8: 737–771

    Article  PubMed  CAS  Google Scholar 

  • Wong TC, Ayata M, Ueda S, Hirano A (1991) Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. J Virol 65: 2191–2199

    PubMed  CAS  Google Scholar 

  • Zerial M. Huylebroeck D, Garoff H (1987) Foreign transmembrane peptides replacing the intemal signal sequence of transferrin receptor allow its replication and membrane binding. Cell 48: 147–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wild, T.F., Buckland, R. (1995). Functional Aspects of Envelope-Associated Measles Virus Proteins. In: ter Meulen, V., Billeter, M.A. (eds) Measles Virus. Current Topics in Microbiology and Immunology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78621-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78621-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78623-5

  • Online ISBN: 978-3-642-78621-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics