Borna Disease—Neuropathology and Pathogenesis

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 190)


Histopathology has contributed substantially to the understanding of the nature of Borna disease (Seifried and Spatz 1930; Gosztonyi and Ludwig 1984a). The Borna disease virus (BDV) belongs to the single- and negative-stranded RNA viruses (Lipkin et al. 1990; de la Torre et al. 1990; Briese et al. 1992; Schneider et al. 1994); however, since it has not yet been visualized morphologically, its classification remains to be established. Although BDV has features of a conventional enveloped virus, it behaves in many respects in a way that has not been observed in any other viral agent. Its primary target is the nervous system, but it appears and apparently replicates in many other organs as well. Its spread is neural, i.e., axonal and transsynaptic. Depending on the virulence of the agent and on the immunological status of the host, several clinical courses of the disease and several types of histopathological manifestations are known (Ludwig et al. 1985, 1988). In nature, the disease occurs in horses and sheep. A similar syndrome was recently found in cats (Lundgren and Ludwig 1993; Lundgren et al. 1993) and ostriches (Malkinson et al. 1993). Borna disease can be transmitted experimentally to a series of animal species from birds to primates (Ludwig et. al. 1988). Serological studies indicate that human BDV infections also exist (see chapter by Bode).


Pyramidal Cell Viral Antigen Tree Shrew Stratum Radiatum Stratum Oriens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anzil AP, Blinzinger K, Mayr A (1973) Persistent Borna virus infection in adult hamsters. Arch Gesamte Virusforsch 40: 52–57PubMedCrossRefGoogle Scholar
  2. Avdaloff WM, Gierend M, Sasaki S, Ludwig H (1981) EEG changes in BD virus infected rabbits. Excerpta Med Int Congr Ser 548: 203Google Scholar
  3. Baenzinger J, Hengartner H, Zinkernagel RM, Cole GA (1986) Induction or prevention of immunopatho-logical disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus. Eur J Immunol 16: 387–393CrossRefGoogle Scholar
  4. Beck A (1925) Die enzootische Encephalitis des Schafes. Dtsch Tierarztl Wochenschr 34: 764Google Scholar
  5. Beck A, Frohböse H (1926) Die enzootische Encephalitis des Schafes. Vergleichende experimentelle Untersuchungen über die seuchenhafte Gehirnrückenmarksenzündung der Pferde und Schafe. Arch Wiss Prakt Tierheilkd 83: 84–110Google Scholar
  6. Bestetti G (1976) Mikroskopische und ultrastrukturelle Untersuchungen an Joest-Degen’schen Einschlusskörperchen bei spontaner Borna-Krankheit des Pferdes. Schweiz Arch Tierheilkd 118: 493–498PubMedGoogle Scholar
  7. Blinzinger K, Anzil AP (1973) Large granular nuclear bodies (karyosphaeridia) in experimental Borna virus infection. J Comp Pathol 83: 589–596PubMedCrossRefGoogle Scholar
  8. Bohne A (1907) Die Negrischen Körperchen und ihre Bedeutung für die Diagnose der Tollwut. Z Inf Krkh Haust (Berl) 2: 229–242Google Scholar
  9. Briese T, de la Torre JC, Lewis A, Ludwig H, Lipkin Wl (1992) Borna disease virus, a negative-strand RNA virus, transscribes in the nucleus of infected cells. Proc Natl Acad Sci USA 89: 11486–11489PubMedCrossRefGoogle Scholar
  10. Brion JP, Couck AM, Flament-Durant J (1982) Intranuclear inclusions in the neurons of senescent rats Acta Neuropathol (Berl) 58: 107–110CrossRefGoogle Scholar
  11. Carbone KM, Duchala CS, Griffin JW, Kincaid AL, Narayan O (1987) Pathogenesis of Borna disease in rats: Evidence that intra-axonal spread is the major route for virus dissemination and the determinant for disease incubation. J Virol 61: 3431–3440PubMedGoogle Scholar
  12. Carbone KM, Trapp BD, Griffin JW, Duchala CS, Narayan O (1989) Astrocytes and Schwann cells are virus-host cells in the nervous system of rats with Borna disease. J Neuropathol Exp Neurol 48: 631–644PubMedCrossRefGoogle Scholar
  13. Carbone KM, Moench TR, Lipkin Wl (1991 a) Schwann cells and ependymal cells in persistently infected rats: location of viral genomic and messenger RNAs by in situ hybridization. J Neuropathol Exp Neurol 50: 205–214PubMedCrossRefGoogle Scholar
  14. Carbone KM, Park SW, Rubin SA, Waltrip RW, Vogelsang GB (1991b) Borna disease: association with a maturation defect in the cellular immune response. J Virol 65: 6154–6164PubMedGoogle Scholar
  15. Cervós-Navarro J, Roggendorf W, Ludwig H, Stitz L (1981) Die Borna-Krankheit beim Affen unter besonderer Berücksichtigung der encephalitischen Reaktion. Verh Dtsch Ges Pathol 65: 208–212PubMedGoogle Scholar
  16. Cox JE, Sims JS (1988) Ventromedial hypothalamic and paraventricular nucleus lesions damage a common system to produce hyperphagia. Behav Brain Res 28: 297–308PubMedCrossRefGoogle Scholar
  17. Czub S (1988) Das optische System in der Pathogenese der Borna-Krankheit: ein Modell für Virusinfektionen des zentralen Nervensystems. Vet med dissertation, BerlinGoogle Scholar
  18. De la Torre JC, Carbone KM, Lipkin Wl (1990) Molecular characterization of the Borna disease agent. Virology 179: 853–856PubMedCrossRefGoogle Scholar
  19. Deschl U (1988) Immunhistologische Untersuchungen zur Charakterisierung der Entzündungszellen bei der experimentellen Bornaschen Krankheit der Lewisratte. Vet med dissertation, GiessenGoogle Scholar
  20. Dittrich W, Bode L, Ludwig H, Kao M, Schneider K (1989) Learning deficiencies in Borna disease virus- infected but clinically healthy rats. Biol Psychiatry 26: 818–828PubMedCrossRefGoogle Scholar
  21. Duggan JP, Booth DA (1986) Obesity, overeating, and rapid gastric emptying in rats with ventromedial hypothalamic lesions. Science 231: 609–611PubMedCrossRefGoogle Scholar
  22. Dürrwald R (1993) Die natürliche Borna-Virus-Infektion der Einhufer und Schafe: Untersuchungen zur Epidemiologie, zu neueren diagnostischen Methoden (ELISA, PCR) und zur Antikörperkinetik bei Pferden nach Vakzination mit Lebendimpfstoff. Vet med dissertation, BerlinGoogle Scholar
  23. Gierend M (1982) Zur Pathogenese der Bornaschen Krankheit: Untersuchungen über die zelluläre Immunantwort, die immunosuppressive Behandlung und die Elektroencephalographie (EEG). Vet med dissertation, BerlinGoogle Scholar
  24. Gosztonyi G (1978) Axonal and transsynaptic spread of viral nucleocapsids in fixed rabies virus encephalitis. J Neuropathol Exp Neurol 37: 618CrossRefGoogle Scholar
  25. Gosztonyi G (1979) Possible mechanisms of spread of fixed rabies virus along neural pathways. In: Bachmann PA (ed) Proceedings of the 4th Munich symposium on mechanisms of viral pathogenesis and virulence. WHO Collaborating Centre for Collection and Evaluation of Data on Comparative Virology, Munich, pp 323–348Google Scholar
  26. Gosztonyi G (1985) Über die elektive Vulnerabilität (spezielle Neurotropie) bei Virusinfektionen des Nervensystems. In: Frydl V (ed) Drittes Neuropathologisches Symposium im Bezirkskrankenhaus Haar. Haar, Germany, pp 69–85Google Scholar
  27. Gosztonyi G (1986) Verbreitung von Viren entlang Neuronennetzen durch transsynaptische Passage-ein Beitrag zur Pathogenese der Tollwut. Tierarztl Prax 14: 199–204PubMedGoogle Scholar
  28. Gosztonyi G (1992) Acute viral encephalitis-a monocyte/macrophage induced disease? Clin Neuropathol 11: 261–262Google Scholar
  29. Gosztonyi G (1994) Ultrastructural composition of lyssaviruses. In: Rupprecht CE et al. (eds) Lyssa-viruses. Springer, Berlin Heidelberg New York (Current topics in microbiology and immunology vol 187)Google Scholar
  30. Gosztonyi G, Ludwig H (1984a) Borna disease of horses: an immunohistochemical and virological study of naturally infected animals. Acta Neuropathol (Berl) 64: 213–221CrossRefGoogle Scholar
  31. Gosztonyi G, Ludwig H (1984b) Neurotransmitter receptors and viral neurotropism. Neuropsychiatr Clin 3: 107–114Google Scholar
  32. Gosztonyi G, Leiskau T, Ludwig H (1983) The significance of the Borna disease virus infection for the non-mammal, the chicken. Zentralbl Bakteriol Mikrobiol Hyg [A] 225: 170Google Scholar
  33. Gosztonyi G, Kao M, Lefert R, Ludwig H (1984) Propagation of Borna disease virus along neuronal chains: a contribution to the pathogenesis of infection of the central nervous system. Zentralbl Bakteriol Mikrobiol Hyg [A] 258: 510Google Scholar
  34. Gosztonyi G, Kao M, Ludwig H (1985) Neural propagation of Borna disease virus in mice following intranasal inoculation. Zentralbl Bakteriol Mikrobiol Hyg [A] 260: 474Google Scholar
  35. Gosztonyi G, Kao M, Doering-Manteuffel S, Ludwig H (1987) Tissue tropism of Borna disease virus. Zentralbl Bakteriol Mikrobiol Hyg [A] 267: 154Google Scholar
  36. Gosztonyi G, Kao M, Bode L, Ludwig H (1988) Vacuolar myelopathy in rats induced by persistent infection with Borna disease virus. Zentralbl Bakteriol Mikrobiol Hyg [A] 269: 525Google Scholar
  37. Gosztonyi G, Ludwig H, Dietzschold B, Kao M (1990) Transsynaptic virus propagation: an in vivo transfection phenomenon. Acta Neurol Scand 81: 267Google Scholar
  38. Gosztonyi G, Kao M, Bode L, Ludwig H (1991a) Obesity syndrome in experimental infection of rats with Borna disease virus. Clin Neuropathol 10: 33–34Google Scholar
  39. Gosztonyi G, Briese T, Bode L, Lipkin Wl, Ludwig H (1991b) Immunohistochemical and molecular detection of Borna disease virus specific structures in the brain. Clin Neuropathol 10: 262Google Scholar
  40. Gosztonyi G, Dietzschold B, Kao M, Rupprecht CE, Ludwig H, Koprowski H (1993) Rabies and Borna disease-a comparative pathogenetic study of two neurovirulent agents. Lab Invest 68: 285–295PubMedGoogle Scholar
  41. Gosztonyi G, Kao M, Dietzschold B, Rupprecht CR, Ludwig H, Koprowski H (1994) Interaction between viral proteins and neurotransmitter receptors directs and modulates transsynaptic virus spread within the central nervous system. Brain Pathol 4: 383Google Scholar
  42. Gosztonyi G, Briese T, Bode L, Lipkin IW, Ludwig H (1995) Ancient (1925) and recent (1991) Borna disease virus “strains” are closely related (in preparation)Google Scholar
  43. Hirano N, Kao M, Ludwig H (1983) Persistent, tolerant or subacute infection in Borna disease virus infected rats. J Gen Virol 64: 1521–1530PubMedCrossRefGoogle Scholar
  44. Joest E, Degen K (1909) Über eigentümliche Kerneinschlüsse der Ganglienzellen bei der enzootischen Gehirn-Rückenmarksentzündung der Pferde. Z Inf Krkh Haustiere 6: 348–356Google Scholar
  45. Joest E, Degen K (1911) Untersuchungen über die pathologische Histologie, Pathogenese und postmortale Diagnose der seuchenhaften Gehirn-Rückenmarksentzündung (Bomasche Krankheit) des Pferdes. Z Inf Krkh Haustiere 9: 1–98Google Scholar
  46. Joest E, Semmler W (1911) Weitere Untersuchungen über die seuchenhafte Gehirn-Rücken-marksentzündung (Bornasche Krankheit) des Pferdes mit besonderer Berücksichtigung des Infektionsweges und der Kerneinschlüsse. Z Inf Krkh Haustiere 10: 293–320Google Scholar
  47. Kao M (1985) Die Pathogenese der Borna Krankheit bei der Ratte. Ein Modell für persistierende Infektionen und subakute/akute Krankheiten des Zentralnervensystems und für die Fettsucht (Obesity Syndrome). Vet med dissertation, BerlinGoogle Scholar
  48. Kao M, Gosztonyi G, Ludwig H (1983) Obesity syndrome in Borna disease virus infected rats. Zentralbl Bakteriol Mikrobiol Hyg [A] 255: 173Google Scholar
  49. Kao M, Ludwig H, Gosztonyi G (1984) Adaptation of Borna disease virus to the mouse. J Gen Virol 65: 1845–1849PubMedCrossRefGoogle Scholar
  50. Kao M, Bode L, Gosztonyi G, Ludwig H (1990) Escape from lethal disease in rats after Borna disease virus infection: survival with obesity syndrome. VIIIth International Congress of Virology, Berlin 1990, abstracts, p 108Google Scholar
  51. Kao M, Gosztonyi G, Bode L, Ludwig H (1995) Pathogenesis of wild and adapted Borna disease (BD) virus strains (in preparation)Google Scholar
  52. Klüver H, Bucy PC (1938) An analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey, with special reference to “psychic blindness”. J Psychol 5: 33–54CrossRefGoogle Scholar
  53. Klüver H, Bucy PC (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatry 42: 979–1000Google Scholar
  54. Környey S (1939) Die primär neurotropen Infektionskrankheiten des Menschen. Fortschr Neurol Psychiat 11: 82–100Google Scholar
  55. Környey S (1954) Das Prinzip der speziellen Neurotropie bei den Viruskrankheiten. Acta Med Acad Sci Hung 6 [Suppl 1]: 119–123PubMedGoogle Scholar
  56. Krey HF, Ludwig H, Boschek CB (1979) Multifocal retinopathy in Borna disease virus infected rabbits. Am J Ophthalmol 87: 157–164PubMedGoogle Scholar
  57. Krey HF, Stitz L, Ludwig H (1982) Virus-induced pigment epithelitis in rhesus monkeys. Clinical and histological findings. Ophthalmologica 185: 205–213PubMedCrossRefGoogle Scholar
  58. Lehmann-Grube F (1971) Lymphocytic choriomeningitis virus. Springer, Vienna, New York (Virology monographs, vol 10)Google Scholar
  59. Lehmann-Grube F (1982) Lymphocytic choriomeningitis virus. In: Foster HI, Small JD, Fox JG (eds) The mouse in biochemical research, vol 2. Academic, New York, pp 231–266Google Scholar
  60. Lillie RD, Armstrong C (1945) Pathology of lymphocytic choriomeningitis in mice. Arch Pathol 40: 141–152Google Scholar
  61. Lipkin Wl, Carbone KM, Wilson MC, Duchala CS, Narayan O, Oldstone BA (1988) Neurotransmitter abnormalities in Borna disease. Brain Res 475: 366–370PubMedCrossRefGoogle Scholar
  62. Lipkin Wl, Travis GH, Carbone KM, Wilson MC (1990) Isolation and characterization of Borna disease agent cDNA clones. Proc Natl Acad Sci USA 87: 4184–4188PubMedCrossRefGoogle Scholar
  63. Ludwig H, Thein P (1977) Demonstration of specific antibodies in the central nervous system of horses naturally infected with Borna disease virus. Med Microbiol Immunol 163: 215–226PubMedCrossRefGoogle Scholar
  64. Ludwig H, Becht H, Groh L (1973) Borna disease (BD), a slow virus infection-biological properties of the virus. Med Microbiol Immunol 158: 275–289PubMedCrossRefGoogle Scholar
  65. Ludwig H, Kraft W, Kao M, Gosztonyi G, Dahme E, Krey H (1985) Borna-Virus-lnfection (BornaKrankheit) bei natürlich und experimentell infizierten Tieren: ihre Bedeutung für Forschung und Praxis. Tierärztl Prax 13: 421–453PubMedGoogle Scholar
  66. Ludwig H, Bode L, Gosztonyi G (1988) Borna disease: a persistent virus infection of the central nervous system. Prog Med Virol 35: 107–151PubMedGoogle Scholar
  67. Ludwig H, Furuya K, Bode L, Klein N, Dürrwald R, Lee DS (1993) Biology and neurobiology of Borna disease viruses (BDV), defined by antibodies, neutralizability and their pathogenic potential. Arch Virol [Suppl] 7: 111–133Google Scholar
  68. Lundgren AL (1992) Feline non-suppurative meningoencephalomyelitis: Clinical and pathological study. J Comp Pathol 107: 411–425PubMedCrossRefGoogle Scholar
  69. Lundgren AL, Ludwig H (1993) Clinically diseased cats with non-suppurative meningoencephalomyelitis have Borna disease virus-specific antibodies. Acta Vet Scand 34: 101–103PubMedGoogle Scholar
  70. Lundgren A-L, Czech G, Bode L, Ludwig H (1993) Natural Borna disease in domestic animals other than horses and sheep. J Vet Med (B) 40: 298–303CrossRefGoogle Scholar
  71. Lyons MJ, Faust IM, Hemmes RB, Buskirk DR, Hirsch J, Zabriskie JB (1982) A virally induced obesity syndrome in mice. Science 216: 82–85PubMedCrossRefGoogle Scholar
  72. Malkinson M, Weisman Y, Ashash E, Bode L, Ludwig H (1993) Borna disease in ostriches. Vet Record 133: 304CrossRefGoogle Scholar
  73. Morales JA, Herzog S, Kompter C, Frese K, Rott R (1988) Axonal transport of Borna disease virus along olfactory pathways in spontaneously and experimentally infected rats. Med Microbiol Immunol 177: 51–68PubMedCrossRefGoogle Scholar
  74. Müller FL, Fritsch R (1955) Die Augenveränderungen bei der Bornaschen Krankheit. Wien Tierärztl Mschr 42: 866–871Google Scholar
  75. Nagashima K, Zabriskie JB, Lyons MJ (1992) Virus-induced obesity in mice: association with a hypothalamic lesion. J Neuropathol Exp Neurol 51: 101–109PubMedCrossRefGoogle Scholar
  76. Narayan O, Herzog S, Frese K, Scheefers H, Rott R (1983a) Behavioral disease in rats caused by immunopathological responses to persistent Borna virus in the brain. Science 220: 1401–1403PubMedCrossRefGoogle Scholar
  77. Narayan O, Herzog S, Frese K, Scheefers H, Rott R (1983b) Pathogenesis of Borna disease in rats: Immune-mediated viral ophthalmoencephalopathy causing blindness and behavioral abnormalities. J Infect Dis 148: 305–315PubMedCrossRefGoogle Scholar
  78. Neubert M (1984) Die Bornasche Krankheit beim Rhesusaffen-eine licht- und elektronenmikroskopische Untersuchung. Inaugural-dissertation, Berlin 1984Google Scholar
  79. Nitzschke E (1963) Untersuchungen über die experimentelle Bornavirus-Infektion bei der Ratte. Zentralbl Vet Med (B) 10: 470–527CrossRefGoogle Scholar
  80. Oldstone MBA, Rall GF (1993) Mechanism and consequence of viral persistence in cells of the immune system and neurons. Intervirology 35: 116–121PubMedGoogle Scholar
  81. Orioli PJ, Strick PL (1989) Cerebellar connections with the motor cortex and the arcuate premotor area: An analysis employing retrograde transneuronal transfer of WGA-HRP. J Comp Neurol 288: 612–626PubMedCrossRefGoogle Scholar
  82. Petrov (1993) Analyse der entzündlichen Reaktion bei der experimentellen Borna-Encephalitis der Ratte. Inaugural dissertation, Freie Universität BerlinGoogle Scholar
  83. Pette H, Környey S (1935) Über die Pathogenese und die Pathologie der Bornaschen Krankheit im Tierexperiment. Dtsch Z Nervenheilkd 136: 20–65CrossRefGoogle Scholar
  84. Planz O, Bilzer T, Sobbe M, Stitz L (1993) Lysis of major histocompatibility complex class l-bearing cells in Borna disease virus-induced degenerative encephalopathy. J Exp Med 178: 163–174PubMedCrossRefGoogle Scholar
  85. Richt J (1988) Bedeutung der zellulären Immunreaktion bei der Pathogenese der Bornaschen Krankheit. Vet med dissertation, GiessenGoogle Scholar
  86. Roggendorf W, Sasaki S, Ludwig H (1983) Light microscope and immunohistological investigations on the brain of Borna disease virus-infected rabbits. Neuropathol Appl Neurobiol 9: 287–296PubMedCrossRefGoogle Scholar
  87. Rubin SA, Waltrip RW, Bautista JR, Carbone KM (1993) Borna disease virus in mice: Host-specific differences in disease expression. J Virol 67: 548–552PubMedGoogle Scholar
  88. Schmidt J (1912) Untersuchungen über das klinische Verhalten der seuchenhaften GehirnRückenmarksentzündung (Bornaschen Krankheit) des Pferdes nebst Angaben über diesbezügliche therapeutische Versuche. Berl Tierärztl Wochenschr 28: 581–586 and 597–603Google Scholar
  89. Schneider P, Briese T, Zimmermann W, Ludwig H, Lipkin Wl (1994) Sequence conservation in field and experimental isolates of Borna disease virus. J Virol 68: 63–68PubMedGoogle Scholar
  90. Seifried O (1931) Pathologie neurotroper Viruskrankheiten der Haustiere (mit Berücksichtigung der vergleichenden Pathologie). Erg Allg Pathol 24: 554–676Google Scholar
  91. Seifried O, Spatz H (1930) Die Ausbreitung der encephalitischen Reaktion bei der Bornaschen Krankheit der Pferde und deren Beziehungen zu der Encephalitis epidemica, der Heine-Medinschen Krankheit und der Lyssa des Menschen. Eine vergleichend-pathologische Studie. Z Neurol Psychiat 124: 317–382CrossRefGoogle Scholar
  92. Shadduck JA, Danner K, Dahme E (1970) Fluoreszenzserologische Untersuchungen über Auftreten und Lokalisation von Borna-Virusantigen in Gehirnen experimentell infizierter Kaninchen. Zentralbl Vet Med (B) 17: 453–459CrossRefGoogle Scholar
  93. Sprankel H, Richarz K, Ludwig H, Rott R (1978) Behavior alterations in tree shrews (Tupaia glis, Diard 1820) induced by Borna disease virus. Med Microbiol Immunol 165: 1–18PubMedCrossRefGoogle Scholar
  94. Stitz L, Richt JA, Rott R (1991) Immunpathogenese der Borna-Krankheit. Tierarztl Prax 19: 267–270PubMedGoogle Scholar
  95. Szentágothai J, Flerkó B, Mess B, Halász B (1972) Hypothalamic control of the anterior pituitary. An experimental-morphological study, 3rd edn. Akadémiai Kiadó, BudapestGoogle Scholar
  96. Terzian H, Ore GD (1955) Syndrome of Klüver and Bucy-reproduced in a man by bilateral removal of the temporal lobes. Neurology 5: 373–380PubMedGoogle Scholar
  97. Vogt C, Vogt O (1920) Zur Lehre der Erkrankungen des striären Systems. J Psychol Neurol (Lpz) Ergebn-Heft 3, 25: 627Google Scholar
  98. Wagner K, Ludwig H, Paulsen J (1968) Fluoreszenzserologischer Nachweis von Borna-Virus Antigen. Berl Münch Tierärztl Wochenschr 81: 395–396PubMedGoogle Scholar
  99. Walther A (1952) Auffällige Sehstörungen bei Bornascher Krankheit des Pferdes. Dtsch Tierärztl Wochenschr 59: 88Google Scholar
  100. Weisman Y, Malkinson M, Perl S, Machany S, Lublin A, Ashash E (1993a) Paresis in young ostriches. Vet Rec 133: 78CrossRefGoogle Scholar
  101. Weisman Y, Malkinson M, Ashash E, Nir A (1993b) Serum therapy of a paretic syndrome of ostriches. Vet Rec 133: 172PubMedCrossRefGoogle Scholar
  102. Zimmermann W, Dürrwald R, Ludwig H (1993) Detection of Borna disease virus RNA in naturally infected animals by the polymerase chain reaction. J Virol Methods 46: 133–143CrossRefGoogle Scholar
  103. Zwick W (1939) Bornasche Krankheit und Encephalomyelitis der Tiere. In: Gildenmeister E, Haagen E, Waldmann O (eds) Handbuch der Viruskrankheiten II. Fischer, Jena, pp 254–354Google Scholar
  104. Zwick W, Seifried O (1927) Infektiöse Gehirn-Rückenmarks-Entzündung (Bornasche Krankheit) des Pferdes. In: Kolle W, Kraus R, Uhlenhuth P (eds) Handbuch der pathogenen Mikroorganismen. Fischer, Jena, Urban and Schwarzenberg, Berlin, pp 117–144Google Scholar
  105. Zwick W, Seifried O, Witte J (1926) Experimentelle Untersuchungen über die seuchenhafte Gehirn- und Rückenmarksentzündung der Pferde (Bornasche Krankheit). Z Inf Krkh Haustiere 30: 42–136Google Scholar
  106. Zwick W, Seifried O, Witte J (1929) Weitere Beiträge zur Erforschung der Bornaschen Krankheit des Pferdes. Arch Wiss Prakt Tierheilkd 59: 511–545Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.Institut für NeuropathologieFreie Universität Berlin, Universitätsklinikum Benjamin FranklinBerlinGermany
  2. 2.Institut für VirologieFreie Universität BerlinBerlinGermany

Personalised recommendations