Skip to main content

Therapeutic Applications of Monoclonal Antibodies in Combination with Cytokines in Renal Cell Carcinoma

  • Conference paper
  • 40 Accesses

Abstract

Various murine monoclonal antibodies (mAbs) have been used as “naked” antibodies — not conjugated to radionuclides or toxins — in clinical trials among cancer patients. Although a few complete responses have been observed [1, 2], in general the response rates are low and antitumor effects of short duration. For optimal antitumor activity, mAbs must meet various criteria. First of all, mAbs used for immunotherapy should be specific for antigens present on tumor tissue, preferably with little or no cross-reactivity with normal tissue. For optimal antibody uptake, the tumor must be vascular [3]. The blood supply in large tumors is often deficient, leading to central necrosis and poor uptake of mAb [4]. Apart from these parameters, the size of the mAb-derived immunoreactive component influences the localization pattern in tumor versus normal tissue. Intact IgG has a half-life in patients of approximately 24–72 h, F(ab′)2 one of 10–24 h, and Fab′ fragments one of only 1.5–5 h depending on the mAb used [5, 6]. Compared with antibody fragments, intact IgG shows a higher percentage of the injected dose per gram tumor (%ID/g), most probably due to faster clearance from blood of antibody fragments and in the case of Fab′ of reduced affinity [7]. On the other hand, again due to the more rapid clearance from blood, resulting in lower background levels, F(ab′)2 and Fab′ fragments have better tumor to blood ratios and therefore show improved tumor imaging [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg SA, Longo DL, Lotze MT (1987) Principles and applications of biologic therapy. In: DeVita YT Jr, Hellman S. Rosenberg SA (eds) Cancer. Principles and practice of oncology. Lippincott, Philadelphia, pp 301–347

    Google Scholar 

  2. Foon KA (1989) Biological response modifiers: the new immunotherapy. Cancer Res 49: 1621–1639

    PubMed  CAS  Google Scholar 

  3. Sands H, Jones PL, Shah SA, Palme D, Vessella RL, Gallagher BM (1988) Correlation of vascular permeability and blood flow with monoclonal antibody uptake by human clouser and renal cell xenografts. Cancer Res 48: 188–193

    PubMed  CAS  Google Scholar 

  4. Dvorak HF, Nagy JA, Dvorak AM (1991) Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3: 77–85

    PubMed  CAS  Google Scholar 

  5. Covell DG, Barbet J, Holton OD, Black CDV, Parker RJ, Weinstein JN (1986) Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2 and Fab’ in mice. Cancer Res 46: 3969–3978

    PubMed  CAS  Google Scholar 

  6. Fujimori K, Covell DG, Fletcher JE, Weinstein JN (1989) Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res 49: 5656–5663

    PubMed  CAS  Google Scholar 

  7. Gerretsen M, Quak JJ, Suh JS, Van Walsum M, Meijer CJLM, Snow GB, Van Dongen GAM (1991) Superior localisation and imaging of radiolabeled monoclonal antibody E48 F(ab’)2 fragment in xenografts of human squamous cell carcinoma of the head and neck and of the vulva as compared to monoclonal antibody E48 IgG. Br J Cancer 63: 37–44

    Article  PubMed  CAS  Google Scholar 

  8. Andrew SM, Johnstone RW, Russell SM, McKenzie IFC, Pietersz GA (1990) Comparison of in vitro cell binding characteristics of four monoclonal antibodies and their individual tumor localization properties in mice. Cancer Res 50:4423–4428

    PubMed  CAS  Google Scholar 

  9. Haisma HJ, Goedemans W, Hilgers J (1987) Tumor imaging with monoclonal antibodies. In: Den Otter W, Ruitenberg EJ (eds) Amsterdam, Elsevier, Tumor immunology - mechanisms, diagnosis, therapy pp 23–38

    Google Scholar 

  10. Ortaldo JR, Woodhouse CS, Morgan AC, Herberman RB, Cheresh DA, Reisfeld RA (1987) Analysis of effector cells in human antibody-dependent cellular cytotoxicity with murine monoclonal antibodies. J Immunol 138: 3566–3572

    PubMed  CAS  Google Scholar 

  11. Lubeck MD, Kimoto Y, Steplewski Z, Koprowski H (1988) Killing of human tumor cell lines by human monocytes and murine monoclonal antibodies. Cell Immunol 111: 107–117

    Article  PubMed  CAS  Google Scholar 

  12. Tong AW, Lee JC, Wang R, Ordonez G, Stone MJ (1989) Augmentation of lymphokine-activated killer cell cytotoxicity by monoclonal antibodies against human small cell lung cancer. Cancer Res 49: 4103–4108

    PubMed  CAS  Google Scholar 

  13. Pendurthi TK, Parker R, Schlom J, Primus FJ (1990) Lymphokine-activated killer cell cytotoxicity against human colon carcinomas enhanced by monoclonal antibody D612. Int J Cancer 46: 1021–1028

    Article  PubMed  CAS  Google Scholar 

  14. Masui H, Moroyama T, Mendelsohn J (1986) Mechanism of antitumor activity for anti-epidermal growth factor receptor monoclonal antibodies with different isotypes. Cancer Res 46: 5592–5598

    PubMed  CAS  Google Scholar 

  15. Mittelman A, Kageshita T, Kusama K, Kim JW, Arlin ZA, Ferrone SA (1988) A clinical trial of murine antiidiotype monoclonal antibodies to high molecular weight melanoma associated antigens. Proc Am Soc Clin Oncol 7: 248

    Google Scholar 

  16. Kerbel RJ (1979) Implications of immunological heterogeneity of tumors. Nature 280: 358–360

    Article  PubMed  CAS  Google Scholar 

  17. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47: 3039–3051

    PubMed  CAS  Google Scholar 

  18. Schroff RW, Stevenson HC (1985) Human immune responses to murine monoclonal antibodies. In: Foon KA, Morgan AC (eds) Monoclonal antibody therapy of human cancer. Nijhoff, The Hague, pp 121–138

    Chapter  Google Scholar 

  19. Spitler LE, del Rio M, Khentigan A, Wedel NI, Brophy NA, Miller LL, Harkonen WS, Rosendorf LL, Lee HM, Mischak RP, Kawahata RT, Stoudemire JB, Fradkin LB, Bautista EE, Scannon PJ (1987) Therapy of patients with malignant melanoma using a monoclonal antimelanoma antibody-ricin A chain immunotoxin. Cancer Res 47: 1717–1723

    PubMed  CAS  Google Scholar 

  20. Byers VS, Baldwin RW (1988) Therapeutic strategies with monoclonal antibodies and immunoconjugates. Immunology 65: 329–335

    PubMed  CAS  Google Scholar 

  21. Order SE, Sleeper AM, Stillwagon GB, Klein JL, Leichner PK (1990) Radiolabeled antibodies: results and potential in cancer therapy. Cancer Res 50 [Suppl]: 1011s-1013s

    PubMed  CAS  Google Scholar 

  22. Perez P, Titus JA, Lotze MT, Cuttita F, Longo DL, Groves ES, Rabin H, Durda PJ, and Segal DM (1986) Specific lysis of human tumor cells by T cells coated with anti-T3 crosslinked to anti tumor antibody. J Immunol 137: 2069–2072

    PubMed  CAS  Google Scholar 

  23. Lanzavecchia A, Scheidegger D (1987) The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol 17: 105–111

    Article  PubMed  CAS  Google Scholar 

  24. Titus JA, Garrido MA, Hecht TT, Winkler DF, Wunderlich JR, Segal DM (1987) Human T cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice. J Immunol 138: 4018–4022

    PubMed  CAS  Google Scholar 

  25. Van Dijk J, Warnaar SO, van Eendenburg JDH, Thienpont M, Braakman E, Boot JHA, Fleuren GJ, Bolhuis RLH (1989) Induction of tumor-cell lysis by bi-specific monoclonal antibodies recognizing renal-cell carcinoma and CD3 antigen. Int J Cancer 43: 344–349

    Article  PubMed  Google Scholar 

  26. Van Dijk J, Tsuruo T, Segal DM, Bolhuis RLH, Colognola R, Van de Griend RJ, Fleuren GJ, Warnaar SO (1989) Bispecific antibodies reactive with the multidrug-resistance-related glycoprotein and CD3 induce lysis of multidrug-resistant tumor cells. Int J Cancer 44: 738–743

    Article  PubMed  Google Scholar 

  27. Qian J-H, Titus JA, Andrew SM, Mezzanzanica D, Garrido MA, Wunderlich JR, Segal DM (1991) Human peripheral blood lymphocytes targeted with bispecific antibodies release cytokines that are essential for inhibiting tumor growth. J Immunol 146: 3250–3256

    PubMed  CAS  Google Scholar 

  28. Real FX, Bander NH, Cordon-Cardo C, Old LJ, Oettgen HF (1988) Phase I study of monoclonal antibody F23 in patients with renal cancer. Proc Am Soc Clin Oncol 7: 131

    Google Scholar 

  29. Kochevar J (1990) Blockage of autonomous growth of ACHN cells by anti-renal cell carcinoma monoclonal antibody 5F4. Cancer Res 50: 2968–2972

    PubMed  CAS  Google Scholar 

  30. Chiou RK, Vessella RL, Limas A, Shafer RB, Elson MK, Arfman EW, Lange PH (1988) Monoclonal antibody-targeted radiotherapy of renal cell carcinoma using a nude mouse model. Cancer 61: 1766–1775

    Article  PubMed  CAS  Google Scholar 

  31. Chiou RK (1991) The impact of tumor size on the efficacy of monoclonal antibodytargeted radiotherapy: studies using a nude mouse model with human renal cell carcinoma xenografts. J Urol 146: 232–237

    PubMed  CAS  Google Scholar 

  32. Sasaki A, Melder RJ, Whiteside TL, Herberman RB, Jain RK (1991) Preferential localization of human adherent lymphokine-activated killer cells in tumor microcirculation. J Natl Cancer Inst 83: 433–437

    Article  PubMed  CAS  Google Scholar 

  33. Singh M, Ghose T, Mezei M, Belitsky P (1991) Inhibition of human renal cancer by monoclonal antibody targeted methotrexate-containing liposomes in an ascites tumor model. Cancer Lett 56: 79–102

    Article  Google Scholar 

  34. Rosenberg SA (1989) Clinical immunotherapy studies in the Surgery Branch of the U.S. National Cancer Institute: brief review. Cancer Treat Rev 16 [Suppl A]: 115–121

    Article  PubMed  Google Scholar 

  35. West WH (1989) Continuous infusion recombinant interleukin-2 (rIL-2) in adoptive cellular therapy of renal carcinoma and other malignancies. Cancer Treat Rev 16 [Suppl A]: 83–89

    Article  PubMed  Google Scholar 

  36. Bukowski RM, Goodman P, Crawford ED, Sergi JS, Redman BG, Whitehead RP (1990) Phase II trial of high-dose intermittent interleukin-2 in metastatic renal cell carcinoma: a Southwest Oncology Group study. J Natl Cancer Inst 82: 143–146

    Article  PubMed  CAS  Google Scholar 

  37. Calabrusi F, Ruggeri EM (1990) Interleukin-2: toxicity and supportive care. Insights Immunother 1: 41–45

    Google Scholar 

  38. Quesada JR, Reuben J, Manning JT, Hirsch EM, Gutterman JU (1984) a-Interferon for induction of remission in hairy cell leukemia. N Engl J Med 310: 15–18

    Article  PubMed  CAS  Google Scholar 

  39. Muss HB, Costanzi JJ, Leavitt R, Williams RD, Kempf RA, Pollard R, Ozer H, Zkan PJ, Grunberg SM, Mitchel MS, Caponera M, Gavigan M, Ernest ML, Venturi C, Greiner JW, Spiegel RJ (1987) Recombinant alpha interferon: a randomized trial of two routes of administration. J Clin Oncol 5: 286–291

    PubMed  CAS  Google Scholar 

  40. Otto U, Schneider AW, Conrad S, Klosterhalfen H (1990) Recombinant alpha-2 or gamma interferon in the treatment of metastatic renal cell carcinoma: results of two phase II/III trails. Prog Clin Biol Res 350: 275–282

    PubMed  CAS  Google Scholar 

  41. Krown SE (1987) Interferon treatment of renal cell carcinoma. Cancer 59: 647–651

    Article  PubMed  CAS  Google Scholar 

  42. Baisch H, Otto U, Klöppel G (1990) Antiproliferative and cytotoxic effects of single and combined treatment with tumor necrosis factor α and/or α interferon on a human renal cell carcinoma xenotransplanted into nu/nu mice: cell kinetic studies: Cancer Res 50: 3689–3695

    Google Scholar 

  43. Lübeck MD, Steplewski Z, Baglia F, Klein MH, Dorrington KJ, Koprowski H (1985) The interaction of murine IgG subclass proteins with human monocyte Fc receptors. J Immunol 135: 1299–1304

    PubMed  Google Scholar 

  44. Weber JS, Rosenberg SA (1988) Modulation of murine tumor major histocompatibility antigens by cytokines in vivo and in vitro. Cancer Res 48: 5818–5824

    PubMed  CAS  Google Scholar 

  45. Beniers AJMC, Peelen WP, Debruyne FMJ, Schalken JA (1991) HLA class-I and class-II expression on renal tumor xenografts and the relation to sensitivity for alpha-IFN, gamma-IFN and TNF. Int J Cancer 48: 709–716

    Article  PubMed  CAS  Google Scholar 

  46. Onishi T, Machida T, Masuda F, Hatano T, Shirakawa H, Natori T, Hamamoto M, Matsuoka Y (1991) Assessment of tumor-infiltrating lymphocytes, regional lymph node lymphocytes and peripheral blood lymphocytes and their reaction to inter-feron-gamma in patients with renal carcinoma. Br J Urol 67: 459–466

    Article  PubMed  CAS  Google Scholar 

  47. Haranaka K (1988) Tumor necrosis factor. How to improve the antitumor activity and decrease accompanying side effects for therapeutic application. J Biol Response Mod 7: 525–534

    PubMed  CAS  Google Scholar 

  48. Palladino MA, Shalaby MR, Kramer SM, Ferraiolo BL, Baughman RA, Deleo AB, Crase D, Marafino B, Aggarwal BB, Figari IS, Liggitt D, Patton JS (1987) Characterization of the antitumor activities of human tumor necrosis factor-a and the comparison with other cytokines: induction of tumor-specific immunity. J Immunol 138: 4023–4032

    PubMed  CAS  Google Scholar 

  49. Eisenthal A, Rosenberg SA (1989) The effect of various cytokines on the in vitro induction of antibody-dependent cellular cytotoxicity in murine cells. Enhancement of IL-2-induced ADCC activity by IL-1 and TNF. J Immunol 142: 2307–2313

    PubMed  CAS  Google Scholar 

  50. Keller R, Keist R, Wechsler A, Leist TP, Van Der Meide PH (1990) Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the role of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 46: 682–686

    Article  CAS  Google Scholar 

  51. Hoffman M, Weinberg JB (1987) Tumor necrosis factor-a induces increased hydrogen peroxide production and Fc receptor expression, but not increased la antigen expression by peritoneal macrophages. J Leukoc Biol 42: 704–707

    PubMed  CAS  Google Scholar 

  52. Collins T, Lapierre LA, Fiers W, Strominger JL, Polber JS, Recombinant human tumor necrosis factor increases mRNA levels and surface expression on HLA-A, B antigens in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci USA 83: 446–450

    Google Scholar 

  53. Creagan ET, Kovach JS, Moertel CG, Frytak S, Kvols LK (1988) A phase I clinical trial of recombinant human tumor necrosis factor. Cancer 62: 2467–2471

    Article  PubMed  CAS  Google Scholar 

  54. Beniers AJMC, Van Moorselaar RJA, Peelen WP, Debruyne FMJ, Schalken JA (1991) Differential sensitivity of renal cell carcinoma xenografts towards therapy with interferon-alpha, interferon-gamma, tumor necrosis factor and their combinations: possible implications for clinical studies. Urol Res

    Google Scholar 

  55. Oosterwijk E, Ruiter DJ, Hoedemaeker PhJ, Pauwels EKJ, Jonas U, Zwartendijk J, Warnaar SO (1986) Monoclonal antibody G250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38: 489–494

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Dijk, J., Beniers, A.J.M.C., Schalken, J.A., Fleuren, G.J., Warnaar, S.O. (1994). Therapeutic Applications of Monoclonal Antibodies in Combination with Cytokines in Renal Cell Carcinoma. In: Staehler, G., Pomer, S. (eds) Contemporary Research on Renal Cell Carcinoma. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78609-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78609-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78611-2

  • Online ISBN: 978-3-642-78609-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics